Abstract:The article presents research results of the introduction of powdery activated carbon to the existing technological system of the groundwater treatment stations in a laboratory, pilot plant and technical scale. The aim of the research was to reduce the content of organic compounds found in the treated water, which create toxic organic chlorine compounds (THM) after disinfection with chlorine. Nine types of powdery active carbons were tested in laboratory scale. The top two were selected for further study. Pilot plant scale research was carried out for the fi lter model using CWZ-30 and Norit Sa Super carbon. Reduction of the organic matter in relation to the existing content in the treated water reached about 30%. Research in technical scale using CWZ-30 carbon showed a lesser effi ciency with respect to laboratory and pilot-plant scale studies. The organic matter decreased by 15%. Since fi ltration is the last process before the individual disinfection, an alternative solution is proposed, i.e. the second stage of fi ltration with a granular activated carbon bed, operating in combined sorption and biodegradation processes. The results of tests carried out in pilot scale were fully satisfactory with the effectiveness of 70-100%.Unauthenticated Download Date | 5/12/18 2:33 AM
The article describes the research on the removal of organic matter from natural underground water using biofiltration process. The study was carried out in semi-technical scale on a model filter composed of activated carbon WD-extra. The development of biological activity in a biosorption bed, as well as observations on the relationship between the processes of sorption and biodegradation was evaluated based on the Eberhardt, Madsen, Sontheimer (EMS) test. Leading operation control parameters of biologically active carbon filter BAF included: change of TOC content, dissolved oxygen and permanganate index. To evaluate the colonization of granular carbon determination of ATP value was used. The presence of the biofilm was found by observation using light and scanning microscopes. The organic compounds in the water taken were adsorbed 100% and 70% biodegradable. The combination of sorption process with biodegradation until depletion of activated carbon adsorption capacity allowed in the initial phase of coalbed work for the removal of organic matter in approx. 100%. Formation of biofilm at the right time allowed to extend the filtration cycle and helped lower the TOC by 70%, i.e. from 10 mg C/l to 3-4 mg C/l.
The paper presents the research on the usability of natural Carpathian diatomite for removing chromate ions from water solutions. The concentration of chromium (VI) in test water was C 0 = 1 g/m 3. Both raw diatomite and the diatomite modified with iron compounds of granulation 0.5-1.0 mm were tested. The process kinetics, as well as the effect of water reaction and the diatomite type on chromium sorption were determined under static conditions (no through flow). For both diatomite types, the chromium adsorption proceeded most effectively at pH 4. The effect of diatomite modification with iron compounds on the effectiveness of chromium (VI) adsorption was determined on the basis of Freundlich adsorption isotherm. Compared to raw diatomite, the modified adsorbent (diatomite-Fe) exhibited great sorption capacity for chromate ions from water. When applied under dynamic conditions (v = 4 m/h), as filtration bed, it removed chromium compounds from water very effectively. It makes diatomite-Fe material a promising candidate for application in water treatment systems. The chromium concentration in the effluent oscillated within C k = 0.001-0.002 mg/dm 3 , and the adsorption capacity of the bed, determined in the bed breakthrough point, reached P p = 316.8 mg/kg.
The paper presents the results of laboratory tests on possibilities to utilize active carbons produced in Poland (AG-5 and DTO) and clinoptilolite for removing naphthalene from a water solution in the adsorption process. The concentration of naphthalene in the model solution was 20 mg/dm3. The effects of pH, dose and adsorption time were determined under static conditions. Adsorption kinetics were consistent with the pseudo-second-order model (PSO). Among the applied models, the best fit was obtained using the Langmuir isotherms. The maximum adsorption capacity for the activated carbons (AG-5 and DTO) equaled 24.57 and 30.28 mg/g, respectively. For clinoptilolite, all the analyzed models of adsorption poorly described the adsorption process. The flow conditions were realized by filtration method. On the basis of the obtained results, the breakthrough curves, so-called isoplanes, were prepared and served in turn to determine the adsorption capacities in flow conditions. The total adsorption capacities determined under dynamic conditions of the AG-5 and DTO activated carbons were 85.63 and 94.54 mg/g, respectively, and only 2.72 mg/g for clinoptilolite. The exit curves (isoplanes) were also utilized to determine the mass penetration zone (the adsorption front height), as well as to calculate the rate of mass-exchange zone advance.
Phenol and its derivatives (chlorophenol, nitrophenol, methylphenol, cresol etc.) belong to highly toxic contaminants, and their occurrence in industrial and municipal sewage as well as in groundwater carries a high threat to the environment and human health. Elimination of such contaminants is one of the major challenges in solving the global environmental problems. Implementation of pro-ecological methods of water treatment is associated with the use of natural, cheap and unprocessed materials, with the possibility of their repeated use. The article presents the results of the studies on the use of powdery adsorbents for the removal of phenol from aqueous solutions. The following natural minerals were used: attapulgite-Abso'net Superior Special (ASS) and alganite-Abso'net Multisorb (AM). Tests were performed under non-flowing conditions, in series, depending on the type and dose of adsorbents. Tests were conducted on a model solution of phenol with the initial concentration of C 0 = 20 mg /dm 3 , at the temp. of 20掳 C. Alganite mineral (AM) proved to be effective in adsorption of phenol. Maximum adsorption capacity P = 0.21 g/g, was obtained for a dose 10 mg/dm 3. Almost complete removal of phenol (99.9%) was obtained for a dose of 500 mg/dm 3. For natural attapulgite-Abso'net Superior Special (ASS) the maximum adsorption capacity (at a dose 5 mg/dm 3) amounted to P = 0.15 g/g. The efficiency of phenol removal at the level 99% was obtained at a dose of 1000 mg/dm 3).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.