Glass-forming ability (GFA) of bulk metallic glasses (BMGs) is a determinant parameter which has been significantly studied. GFA improvements could be achieved through trial-and-error experiments, as a tedious work, or by using developed predicting tools. Machine-Learning (ML) has been used as a promising method to predict the properties of BMGs by removing the barriers in the way of its alloy design. This article aims to develop a ML-based method for predicting the maximum critical diameter (Dmax) of BMGs as a factor of their glass-forming ability. The main result is that the random forest method can be used as a sustainable model (R2 = 92%) for predicting glass-forming ability. Also, adding characteristic temperatures to the model will increase the accuracy and efficiency of the developed model. Comparing the measured and predicted values of Dmax for a set of newly developed BMGs indicated that the model is reliable and can be truly used for predicting the GFA of BMGs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.