Background. Triticum sinskajae A. Filat. et Kurk. was discovered in the early 70th in the last century at the regular reproduction in the Central Asian and Dagestan VIR-stations of T. monococcum samples.
Materials and methods. The objects of the study were 4 species of diploid wheat — Triticum urartu Thum. ex Gandil. (lines k-62477, k-62465), Triticum monococcum L. (lines k-20970, k-39471), Triticum boeoticum Boiss. (lines k-59161, k-28132, k-40118) and Triticum sinskajae A. Filat. et Kurk. (line k-48993).
Results. We found differences between T. sinskajaeand T. monococcum in the variable region of the histone gene H3.2, and the RAPD analysis showed the presence of unique polymorphic loci in T. sinskajae.
Conclusion. In gene ral, T. boeoticum, T. monococcum, and T. sinskajae are most likely to be closely related species of diploid wheat, whereas T. urartu is quite significantly different from them.
The nucleotide sequence of the chloroplast genome of the diploid wheat Triticum sinskajae A. Filat. et Kurk. was determined. The comparison of the assembled genome with the chloroplast genomes of some di- and polyploid species of the wheat-aegilops alliance revealed a high evolutionary conservativeness and proximity to the plastid genome of T. monococcum, while the other diploid wheat T. urartu is somewhat distant from them. Alignment of the nucleotide sequences of complete chloroplast genomes of diploid wheat with those of diploid aegilops from the Sitopsis and Vertebrata sections, as well as with tetra - and hexaploid wheat from the turgidum-aestivum and timopheevii groups, allowed to establish that different aegilops from the subsection Truncata, close to the current Aegilops speltoides, were as maternal forms during their formation but not directly Ae.speltoides.
High-molecular-weight glutenins play an important role in providing high baking qualities of bread wheat grain. However, breeding bread wheat for this trait is very laborious and, therefore, the genotyping of variety samples according to the allelic composition of high-molecular-weight glutenin genes is of great interest. The aim of the study was to determine the composition of high-molecular-weight glutenin subunits based on the identification of the allelic composition of the Glu-1 genes, as well as to identify the frequency of the Glu-1 alleles in bread wheat cultivars that are in breeding work under the conditions of the Pre-Ural steppe zone (PSZ). We analyzed 26 winter and 22 spring bread wheat varieties from the PSZ and 27 winter and 20 spring varieties from the VIR collection. Genotyping at the Glu-A1 locus showed that the Ax1 subunits are most common in winter varieties, while the predominance of the Ax2* subunits was typical of spring varieties and lines. In the Glu-B1 locus, the predominance of alleles associated with the production of the Bx7 and By9 subunits was revealed for both winter and spring varieties. In the case of the Glu-D1 gene, for all the wheat groups studied, the composition of the Dx5+Dy10 subunits was the most common: in 92.3 % of winter and 68.2 % of spring PSZ accessions and in 80 % of winter and 55 % of spring VIR accessions. The analysis of genotypes showed the presence of 13 different allelic combinations of the Glu-A1, Glu-B1, Glu-D1 genes in the PSZ varieties, and 19 combinations in the VIR varieties. The b b/al/с d allelic combination (Ax2* Вх7+Ву8/8*/9 Dx5+Dy10) turned out to be the most common for the PSZ spring varieties and lines, while for the PSZ winter accessions it was a с d (Ax1 Вх7+By9 Dx5+Dy10); the b с a and b с d genotypes (Ax2* Вх7+Ву9 Dx2+Dy12 and Ax2* Вх7+Ву9 Dx5+Dy10, respectively) occur with equal frequency among the VIR spring accessions; in the group of VIR winter varieties, the combination of the a b/ al d alleles (Ax1 Вх7+Ву8/8* Dx5+Dy10) prevails. The most preferred combination of alleles for baking qualities was found in the spring variety ‘Ekaterina’ and winter varieties ‘Tarasovskaya 97’, ‘Volzhskaya S3’, as well as in lines k-58164, L43510, L43709, L-67, L-83, which are recommended for further breeding programs to improve and preserve baking qualities in the conditions of the Pre-Ural steppe zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.