The possibility of interpolating the internal quantum efficiency of silicon photodiodes using a model with three adjustable parameters is investigated. The three parameters are determined from self-calibration measurements at 351, 476, and 800 nm. The internal quantum efficiency is then interpolated to 407 and 677 nm using the model. The calculated results are compared with direct measurements referenced to an electrical substitution radiometer. A difference of 0.6% was observed at 407 nm. This is probably significant, arising from inadequacies in the internal quantum efficiency model and possibly from volume recombination that is not accounted for by the self-calibration procedure. An insignificant (>0.1%) difference was observed at 677 nm.
An explanation is put forth for the observed nonlinearity in the red spectral region of the response of silicon photodiodes. Experiments are described to support the explanation; and the results, implications, and precautions indicated for the use of these diodes are given. Correlation of nonlinearity with spatial nonuniformity of response is demonstrated.
Purpose:To evaluate wavefront performance and modulation transfer function (MTF) in the human eye after the implantation of diffractive or refractive multifocal intraocular lenses (IOLs).Materials and Methods:This was a prospective, interventional, comparative, nonrandomized clinical study. Uncorrected distance and near visual acuity, and wavefront analysis including MTF curves (iTrace aberrometer, Tracey Technologies, Houston, TX, USA) were measured in 60 patients after bilateral IOL implantation with 6 months of follow-up. Forty eyes received the diffractive ReSTOR (Alcon), 40 eyes received the refractive ReZoom (Advanced Medical Optics) and 40 eyes, the Tecnis ZM900 (Advanced Medical Optics). The comparison of MTF and aberration between the intraocular lenses was performed using analysis of variance (ANOVA), followed by the Dunn test when necessary.Results:The mean uncorrected distance visual acuity was similar in all three groups of multifocal IOLs. The ReSTOR group provided better uncorrected near visual acuity than the ReZoom group (P < 0.001), but similar to the Tecnis group. Spherical aberration was significantly higher in the ReZoom group (P = 0.007). Similar MTF curves were found for the aspheric multifocal IOL Tecnis and the spheric multifocal IOL ReSTOR, and both performed better than the multifocal IOL ReZoom in a 5 mm pupil (P < 0.001 at all spatial frequencies).Conclusions:Diffractive IOLs studied presented similar MTF curves for a 5 mm pupil diameter. Both diffractive IOLs showed similar spherical aberration, which was significantly better with the full-diffractive IOL Tecnis than with the refractive IOL ReZoom.
Mechanisms limiting the internal quantum efficiency in various types of oxide-passivated silicon photodiodes are discussed. It is argued that unit internal quantum efficiency is achievable in metallurgical junction, oxide-n+-p-p+ photodiodes, if it is achievable in the inversion layer of induced junction diodes of the same type. Measurements of the variation in response of the latter type of photodiode under both oxide bias and reverse bias are described. The results indicate that 100% collection of the minority carriers generated in the inversion layer is achieved for sufficiently low flux levels. Implantation in the oxide of Na+ ions to augment the trapped positive charge increases the maximum flux level at which 100% collection is observed.
PURPOSE:To evaluate intraindividual visual acuity, wavefront errors and modulation transfer functions in patients implanted with two diffractive multifocal intraocular lenses.METHODS:This prospective study examined 40 eyes of 20 cataract patients who underwent phacoemulsification and implantation of a spherical multifocal ReSTOR intraocular lens in one eye and an aspheric Tecnis ZM900 multifocal intraocular lens in the other eye. The main outcome measures, over a 3-month follow-up period, were the uncorrected photopic distance and near visual acuity and the defocus curve. The visual acuity was converted to logMAR for statistical analysis and is presented in decimal scale. The wavefront error and modulation transfer function were also evaluated in both groups.RESULTS:At the 3-month postoperative visit, the mean photopic distance uncorrected visual acuity (UCVA) was 0.74 ± 0.20 in the ReSTOR group and 0.76 ± 0.22 in the Tecnis group (p=0.286). The mean near UCVA was 0.96 ± 0.10 in the ReSTOR group and 0.93 ± 0.14 in the Tecnis group (p=0.963). The binocular defocus curve showed measurements between the peaks better than 0.2 logMAR. The total aberration, higher-order aberration and coma aberration were not significantly different between the groups. The spherical aberration was significantly lower in the Tecnis group than in the ReSTOR group. (p=0.004). Both groups performed similarly for the modulation transfer function.CONCLUSION:The ReSTOR SN60D3 and Tecnis ZM 900 intraocular lenses provided similar photopic visual acuity at distance and near. The diffractive intraocular lenses studied provided a low value of coma and spherical aberrations, with the Tecnis intraocular lens having a statistically lower spherical aberration compared to the ReSTOR intraocular lens. In the 5 mm pupil diameter analyses, both intraocular lens groups showed similar modulation transfer functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.