1. Auxin (IAA) transport was investigated using crown gall suspension tissue culture cells. We have shown that auxin can cross the plasmalemma both by transport of IAA anions on a saturable carrier and by passive (not carriermediated) diffusion of the lipid-soluble undissociated IAA molecules (pK=4.7). The pH optimum of the carrier for auxin influx is about pH 6 and it is half-saturated by auxin concentrations in the region of 1-5 μM. We found that the synthetic auxin 2,4D specifically inhibited carrier-mediated IAA anion influx, and possibly also efflux. Other lipid-soluble weak acids which are not auxins, such as 3,4-dichlorobenzoic acid, had no effect on auxin transport. By contrast, we found that TIBA, an inhibitor of polar auxin transport in intact tissues inhibited only the carrier-mediated efflux of IAA. 2. When the pH outside the cells is maintained below that of the cytoplasm (pH 7), auxin can be accumulated by the cells: In the initial phase of uptake, the direction of the auxin concentration gradient allows both passive carrier-mediated anion influx (inhibited by 2,4D) and a passive diffusion of undissociated acid molecules into the cells. Once inside the cytoplasm, the undissociated molecules ionise, producing IAA anions, to a greater extent than in the more acidic extracellular environment. Uptake by passive diffusion continues as long as the extracellular concentration of undissociated acid remains higher than its intra-cellular concentration. Thus, the direction of the auxin anion concentration gradient is reversed after a short period of uptake and auxin accumulates within the cells. The carrier is now able to mediate passive IAA anion efflux (inhibited by TIBA) down this concentration gradient even though net uptake still proceeds because the carrier is saturable whereas passive diffusion is not. 3. Auxin "secretion" from cells is regarded as a critical step in polar auxin transport. The evidence which we present is consistent with the view that auxin "secretion" depends on a passive carrier-mediated efflux of auxin anions which accumulate within the cells when the extra-cellular pH is below that of the cytoplasm. The implications of this view for theories of polar auxin transport are discussed.
The growth and development of two early (Pusa ageti and T-21) and three mediumduration (ST-1, ICP-1 and HY-3C) cultivars of pigeonpea (Cajanus cajan (L.) Millsp.) were compared at Hyderabad, India, in 1974 and1975;in 1976 cv. ICP-1 was studied. The pigeonpeas were grown on a Vertisol and on an Alfisol. The crop growth rate in the first 2 months was low. The maximum rate of 171 kg/ha/day was found in the fourth month of growth of cv. ICP-1 on Alfisol. The early cultivars, one of which (cv. Pusa ageti) was morphologically determinate, and the other (cv. T-21) indeterminate, did not differ in the proportion of dry matter partitioned into seeds. The mean dry weight of the above-ground parts of the medium cultivars on Vertisol in 1975 was 8-45 t/ha, including 2-23 t/ha of fallen plant material. The mean harvest index (ratio of grain dry weight to total plant dry weight) of these cultivars was 0-24 excluding fallen material and 0-17 taking fallen material into account. Starch reserves were present in the stems during the vegetative phase, but disappeared during the reproductive phase. In 1974 the maximum leaf-area index on Vertisol was 3 and on Alfisol 12-7. The net assimilation rate tended to decline throughout the growth period, but in the medium cultivars increased at the end of the reproductive phase, probably because of photosynthesis in pod walls and stems.In 1974 and 1975 the growth of roots and distribution of nodules in Vertisol was investigated by means of soil cores. Roots extended below 150 cm and root growth continued during the reproductive phase. Most nodules were found within the first 30 cm of soil, but some were found below 120 cm. In cv. T-21, grown in brick chambers 150 cm deep, at the time of harvest about three-quarters of the mass of the roots was found in the first 30 cm, and the shoot:root ratio was around 4:1.In 1975 the mean uptake of nitrogen by the medium cultivars on Vertisol was 120 kg/ha, including 34 kg/ha in fallen material. In 1976 the uptake of nitrogen by cv. ICP-1 was 89 kg/ha on Vertisol and 79 kg/ha on Alfisol, including 32 and 23 kg/ha respectively in fallen material. Nitrogen uptake continued throughout the growing period. The percentage of nitrogen in stems and leaves declined as the plants developed and there was a net remobilization of nitrogen from these organs. The pattern of uptake and remobilization of phosphorus resembled that of nitrogen. In 1976 the total uptake of phosphorus by cv. ICP-1 on Vertisol was 5-8 kg/ha and on Alfisol 5-0 kg/ha.The relatively low yields of pigeonpeas result from a restricted partitioning of dry matter into pods, which may be related to the plants' perennial nature. 1977). They are intrinsically perennial (Deneux, . , , ,.. , . •, %. , . ., J J r l ' 'early cultivars are harvested after 4-5 months, * Present address: Department of Plant Physiology, 'medium' cultivars after 5-6 months and 'late' Andhra Pradesh Agricultural University, Rajen-cultivars after 6-9 months; these durations are dranagar, Hyderabad-500030 A.P., India.somewhat longer ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.