The polyamines are organic polycations present at millimolar concentrations in eukaryotic cells where they participate in the regulation of vital cellular functions including proliferation and differentiation. Biological evaluation of rationally designed polyamine analogs is one of the cornerstones of polyamine research. Here we have synthesized and characterized novel C-methylated spermidine analogs, that is, 2-methylspermidine, 3-methylspermidine, and 8-methylspermidine. 3-Methylspermidine was found to be metabolically stable in DU145 cells, while 8-methylspermidine was a substrate for spermidine/spermine N(1)-acetyltransferase (SSAT) and 2-methylspermidine was a substrate for both SSAT and acetylpolyamine oxidase. All the analogs induced the splicing of the productive mRNA splice variant of SSAT, overcame growth arrest induced by 72-h treatment with ornithine decarboxylase (ODC) inhibitor α-difluoromethylornithine, and were transported via the polyamine transporter. Surprisingly, 2-methylspermidine was a weak downregulator of ODC activity in DU145 cells. Our data demonstrates that it is possible to radically alter the biochemical properties of a polyamine analog by changing the position of the methyl group.
The earliest studies concerning polyamines (PAs) in plants were performed by using in vitro cultured explants of Helianthus tuberosus dormant tuber. This parenchyma tissue was particularly useful due to its susceptibility to several growth substances, including PAs. During tuber dormancy, PA levels are too low to sustain cell division; thus Helianthus represents a natural PA-deficient model. When cultivated in vitro in the presence of auxins, Helianthus tuber dormant parenchyma cells at the G(0) stage start to divide synchronously acquiring meristematic characteristics. The requirement for auxins to induce cell division can be substituted by aliphatic PAs such as putrescine, spermidine or spermine. Cylinders or slices of explanted homogeneous tuber parenchyma were cultured in liquid medium for short-term studies on the cell cycle, or on solid agar medium for long-term experiments. Morphological and physiological modifications of synchronously dividing cells were studied during the different phases of the cell cycle in relation to PAs biosynthesis and oxidation. Long-term experiments led to the identification of the PAs as plant growth regulators, as the sole nitrogen source, as tuber storage substances and as essential factors for morphogenetic processes and cell homeostasis. More recently this system was used to study the effects on plant cell proliferation of platinum- or palladium-derived drugs (cisplatin and platinum or palladium bi-substituted spermine) that are used in human cancer cell lines as antiproliferative and cytotoxic agents. Cisplatin was the most active both in cell proliferation inhibition and on PA metabolism. Similar experiments were performed using three agmatine analogous. Different effects of these compounds were observed on cell proliferation, free PA levels and enzyme activities, leading to a hypothesis of a correlation between their chemical structure and the agmatine metabolism in plants.
The polyamines, putrescine, spermidine and spermine, are ubiquitous multifunctional cations essential for cellular proliferation. One specific function of spermidine in cell growth is its role as a butylamine donor for hypusine synthesis in the eukaryotic initiation factor 5A (eIF5A). Here, we report a novel series of mono-methylated spermidine analogs (α-MeSpd, β-MeSpd, γ-MeSpd, and ω-MeSpd) and their role in the hypusination of eIF5A and in supporting the growth of DFMO-treated DU145 cells. We also tested them as substrates and inhibitors for deoxyhypusine synthase (DHS) in vitro. Of these compounds, α-MeSpd, β-MeSpd, and γ-MeSpd (but not ω-MeSpd) were substrates for DHS in vitro, while they all inhibited the enzyme reaction. As racemic mixtures, only α-MeSpd and β-MeSpd supported long-term growth (9–18 days) of spermidine-depleted DU145 cells, whereas γ-MeSpd and ω-MeSpd did not. The S-enantiomer of α-MeSpd, which supported long-term growth, was a good substrate for DHS in vitro, whereas the R isomer was not. The long-term growth of DFMO-treated cells correlated with the hypusine-modification of eIF5A by intracellular methylated spermidine analogs. These results underscore the critical requirement for hypusine modification in mammalian cell proliferation and provide new insights into the specificity of the deoxyhypusine synthase reaction.
Alkylation of ethyl N-hydroxyacetimidate with readily available methanesulfonates of functionally substituted alcohols and subsequent deprotection of aminooxy group is a novel and convenient method to prepare functionally substituted esters of hydroxylamine with high overall yield. This approach is a good alternative to well-known reaction of N-hydroxyphthalimide with alcohols under the Mitsunobu conditions. The properties of ethoxyethylidene protection of aminooxy group on the contrary to that of N-alkoxyphthalimide group allow to perform a wide spectra of the transformations in the radical of N-protected hydroxylamine derivatives. This is essential for synthetic strategies consisting in the introduction of N-protected aminooxy group at one of the first steps of synthesis and subsequent transformations of the radical.The inhibitory effect of one of the newly synthesized compound, 1-guanidinooxy-3-aminopropane (GAPA), was compared with that of well-known inhibitors of ornithine decarboxylase namely, alpha-difluoromethylornithine (DFMO) and 1-aminooxy-3-aminopropane (APA) on Leishmania donovani, a protozoan parasite that causes visceral leishmaniasis. GAPA, on the contrary with APA and DFMO, in micromolar concentrations, inhibited the growth of both amastigotes and promastigotes of sodium antimony gluconate-resistant forms of L. donovani.
The biogenic polyamines, spermine (Spm) and spermidine, are organic polycations present in millimolar concentrations in all eukaryotic cells participating in the regulation of vital cellular functions including proliferation and differentiation. The design and biochemical evaluation of polyamine analogues are cornerstones of polyamine research. Here we synthesized and studied novel C-methylated Spm analogues: 2,11-dimethylspermine (2,11-Me2Spm), 3,10-dimethylspermine (3,10-Me2Spm), 2-methylspermine, and 2,2-dimethylspermine. The tested analogues overcame growth arrest induced by a 72 h treatment with α-difluoromethylornithine, an ornithine decarboxylase (ODC) inhibitor, and entered into DU145 cells via the polyamine transporter. 3,10-Me2Spm was a poor substrate of spermine oxidase and spermidine/spermine-N 1-acetyltransferase (SSAT) when compared with 2,11-Me2Spm, thus resembling 1,12-dimethylspermine, which lacks the substrate properties required for the SSAT reaction. The antizyme (OAZ1)-mediated downregulation of ODC and inhibition of polyamine transport are crucial in the maintenance of polyamine homeostasis. Interestingly, 3,10-Me2Spm was found to be the first Spm analogue that did not induce OAZ1 and, consequently, was a weak downregulator of ODC activity in DU145 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.