Abstract-As the performance of digital signal processors has increased rapidly during the last decade, there is a growing interest to replace the analog controllers in low power switching converters by more complicated and flexible digital control algorithms. Compared to high power converters, the control loop bandwidths for converters in the lower power range are generally much higher. Because of this, the dynamic properties of the uniformly-sampled pulse-width modulators used in low power applications become an important restriction to the maximum achievable bandwidth of control loops. Though frequency-and Laplace-domain models for uniformly-sampled pulse-width modulators are very valuable as they improve the general perception of the dynamic behavior of these modulators, the direct discrete design of the digital compensator requires a zdomain model for the combination modulator and converter. For this purpose a new exact small-signal z-domain model is derived. In accordance with the zero-order-hold equivalent commonly used for 'regular' digital control systems, this z-domain model gives rise to the development of a uniformly-sampled pulse-widthmodulator equivalent of the converter. This z-domain model is characterized by its capability to quantify the different dynamics of the converter for different modulators, its ease of use and its ability to predict the values of the control variables at the true sampling instants of the real system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.