Estrogens and growth factors such as epidermal growth factor (EGF) act as mitogens promoting cellular proliferation in the breast and in the reproductive tract. Although it was considered originally that these agents manifested their mitogenic actions through separate pathways, there is a growing body of evidence suggesting that the EGF and estrogen-mediated signaling pathways are intertwined. Indeed, it has been demonstrated recently that 17-estradiol (E2) can induce a rapid activation of mitogenactivated protein kinase (MAPK) in mammalian cells, an event that is independent of both transcription and protein synthesis. In this study, we have used a pharmacological approach to dissect this novel pathway in MCF-7 breast cancer cells and have determined that in the presence of endogenous estrogen receptor, activation of MAPK by E2 is preceded by a rapid increase in cytosolic calcium. The involvement of intracellular calcium in this process was supported by the finding that the presence of EGTA and Ca 2؉ -free medium did not affect the activation of MAPK by E2 and, additionally, that this response was blocked by the addition of the intracellular calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetate. Cumulatively, these data indicate that the estrogen receptor, in addition to functioning as a transcription factor, is also involved, through a nongenomic mechanism, in the regulation of both intracellular calcium homeostasis and MAPK-signaling pathways. Although nongenomic actions of estrogens have been suggested by numerous studies in the past, the ability to link estradiol and the estrogen receptor to a well defined signaling pathway strongly supports a physiological role for this activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.