PACS 07.05. Tp, 81.05.Zx We study experimentally and theoretically coupling mechanisms between metamaterial elements of the split ring resonator (SRR) type. We show that, depending on the orientation of the elements relative to each other, the coupling may be either of magnetic or electric type or a combination of both. Experimental results on SRRs with resonances around 1.7 -1.9 GHz agree quantitatively with results of simulations (CST Microwave Studio). Further simulations provide analysis for a variety of SRRs both in the GHz and in the 20 THz frequency regions. The variety of coupling mechanisms can be employed in designing near field manipulating devices based on propagation of slow waves.
We present a theoretical and experimental study of a bilayered metamaterial structure for subwavelength imaging of magnetic field. The simplest version of such a structure consists of one or two linear arrays of capacitively loaded split pipe resonators. Its subwavelength physics is governed by strongly anisotropic magnetic coupling between individual resonators and by propagation of magnetoinductive waves with wavelength much shorter than the wavelength of the electromagnetic radiation in free space. It is shown that magnetoinductive waves propagating in the lateral direction are undesirable because they spread the image. Good subwavelength imaging is achieved when, due to the strong interlayer coupling, a stop band in the vicinity of the resonant frequency appears in the dispersion characteristics. The imaging properties of the single and double lens are compared and it is shown that the double lens has a superior performance. Excellent agreement is obtained between experimental and theoretical results for the magnetic field in the image plane in the operation frequency range of 30-60 MHz. It is shown that the same mechanism is responsible for image formation using bilayered planar metamaterial structures and a design of such a lens comprising two planar layers with a total of 542 elements is provided. The conclusions are not restricted to the radio frequency region because the elements can be scaled down.
Electrowetting based infrared lens using ionic liquids Appl. Phys. Lett. 99, 213505 (2011) Modulation of negative index metamaterials in the near-IR range Appl. Phys. Lett. 91, 173105 (2007) Mixed metal films with switchable optical properties Appl. Phys. Lett. 80, 1349Lett. 80, (2002 Population dynamics of the threemicron emitting level of Er3+ in YAlO3 J. Appl. Phys. 80, 6610 (1996) Experimental characterization of reactive ion etched germanium diffraction gratings at 10.6 μm Appl. Phys. Lett. 69, 3453 (1996) Additional information on J. Appl. Phys. The coupling between arbitrarily positioned and oriented split ring resonators is investigated up to THz frequencies. Two different analytical approaches are used, one based on circuits and the other on field quantities that includes retardation. These are supplemented by numerical simulations and experiments in the GHz range, and by simulations in the THz range. The field approach makes it possible to determine separately the electric and magnetic coupling coefficients which, depending on orientation, may reinforce or may cancel each other. Maps of coupling are produced for arbitrary orientations of two co-planar split rings resonant at around 2 GHz and then with the geometry scaled down to be resonant at around 100 THz. We prove that the inertia of electrons at high frequencies results in a dramatic change in the maps of coupling, due to reduction of the magnetic contribution. Our approach could facilitate the design of metamaterials in a wide frequency range up to the saturation of the resonant frequency. V C 2012 American Institute of Physics.
Enhanced thermal stability of dielectric, energy storage, and discharge efficiency in a structurally frustrated piezoelectric system: Erbium modified Na 0.5 Bi 0.5 TiO 3 -BaTiO 3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.