Enhanced thermal stability of dielectric, energy storage, and discharge efficiency in a structurally frustrated piezoelectric system: Erbium modified Na 0.5 Bi 0.5 TiO 3 -BaTiO 3
The capability of magnetic induction to transmit signals in attenuating environments has recently gained significant research interest. The wave aspect—magnetoinductive (MI) waves—has been proposed for numerous applications in RF-challenging environments, such as underground/underwater wireless networks, body area networks, and in-vivo medical diagnosis and treatment applications, to name but a few, where conventional electromagnetic waves have a number of limitations, most notably losses. To date, the effects of eddy currents inside the dissipative medium have not been characterised analytically. Here we propose a comprehensive circuit model of coupled resonators in a homogeneous dissipative medium, that takes into account all the electromagnetic effects of eddy currents, and, thereby, derive a general dispersion equation for the MI waves. We also report laboratory experiments to confirm our findings. Our work will serve as a fundamental model for design and analysis of every system employing MI waves or more generally, magnetically-coupled circuits in attenuating media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.