In this paper, the mean-square stability of second-order Runge-Kutta schemes for multi-dimensional linear stochastic differential systems is studied. Motivated by the work of Tocino [Mean-square stability of second-order Runge-Kutta methods for stochastic differential equations, J. Comput. Appl. Math. 175 (2005) 355-367] and Saito and Mitsui [Mean-square stability of numerical schemes for stochastic differential systems, in: International Conference on SCIentific Computation and Differential Equations, July 29-August 3 2001, Vancouver, British Columbia, Canada] we investigate the mean-square stability of second-order Runge-Kutta schemes for multi-dimensional linear stochastic differential systems with one multiplicative noise. Stability criteria are established and numerical examples that confirm the theoretical results are also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.