Lagrangian relaxation is often an efficient tool to solve (large-scale) optimization problems, even nonconvex. However it introduces a duality gap, which should be small for the method to be really efficient.Here we make a geometric study of the duality gap. Given a nonconvex problem, we formulate in a first part a convex problem having the same dual. This formulation involves a convexification in the product of the three spaces containing respectively the variables, the objective and the constraints. We apply our results to several relaxation schemes, especially one called "Lagrangean decomposition" in the combinatorial-optimization community, or "operator splitting" elsewhere. We also study a specific application, highly nonlinear: the unit-commitment problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.