International audienceThe nonlinear interaction of an intense femtosecond laser pulse with matter can lead to the emission of a train of sub-laser-cycle--attosecond--bursts of short-wavelength radiation1, 2. Much effort has been devoted to producing isolated attosecond pulses, as these are better suited to real-time imaging of fundamental electronic processes3, 4, 5, 6. Successful methods developed so far rely on confining the nonlinear interaction to a single sub-cycle event7, 8, 9. Here, we demonstrate for the first time a simpler and more universal approach to this problem10, applied to nonlinear laser-plasma interactions. By rotating the instantaneous wavefront direction of an intense few-cycle laser field11, 12 as it interacts with a solid-density plasma, we separate the nonlinearly generated attosecond pulse train into multiple beams of isolated attosecond pulses propagating in different and controlled directions away from the plasma surface. This unique method produces a manifold of isolated attosecond pulses, ideally synchronized for initiating and probing ultrafast electron motion in matter
A regression tree analysis on selective oxidation of methane to methanol/formaldehyde was applied to identify fundamentals affecting catalyst performance. The electronegativity correlates with methane activation energy and formaldehyde selectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.