We present new optical long-slit data along six position angles of the bulge region of M 31. We derive accurate stellar and gas kinematics reaching 5 arcmin from the center, where the disk light contribution is always less than 30%, and out to 8 arcmin along the major axis, where the disk provides 55% of the total light. We show that the velocity dispersions of McElroy (1983) are severely underestimated (by up to 50 km s −1 ). As a consequence, previous dynamical models have underestimated the stellar mass of M 31's bulge by a factor of 2. As a further consequence, the light-weighted velocity dispersion of the galaxy grows to 166 km s −1 and to 170 km s −1 if rotation is also taken into account, thus reducing the discrepancy between the predicted and measured mass of the black hole at the center of M 31 from a factor of 3 to a factor of 2. The kinematic position angle varies with distance, pointing to triaxiality, but a quantitative conclusion can be reached only after simultaneous proper dynamical modeling of the bulge and disk components is performed. We detect gas counterrotation near the bulge minor axis. We measure eight emission-corrected Lick indices. They are approximately constant on circles. Using simple stellar population models we derive the age, metallicity and α-element overabundance profiles. Except for the region in the inner arcsecs of the galaxy, the bulge of M 31 is uniformly old (≥12 Gyr, with many best-fit ages at the model grid limit of 15 Gyr), slightly α-elements overabundant ([α/Fe] ≈ 0.2) and of solar metallicity, in agreement with studies of the resolved stellar components. The predicted u − g, g − r and r − i Sloan color profiles match the dust-corrected observations reasonably well, within the known limitations of current simple stellar population models. The stellar populations have approximately radially constant mass-to-light ratios (M/L R ≈ 4−4.5 M /L for a Kroupa IMF), which is in agreement with the stellar dynamical estimates based on our new velocity dispersions. In the inner arcsecs the luminosity-weighted age drops to 4-8 Gyr, while the metallicity increases to above three times the solar value. Starting from 6 arcmin from the center along the major axis, the mean age drops to ≤8 Gyr with slight supersolar metallicity (≈+0.1 dex) and α-element overabundance (≈+0.2 dex) for a mass-to-light ratio M/L R ≤ 3 M /L . Diagnostic diagrams based on the [OIII]/Hβ and [NI]/Hβ emission line equivalent widths (EWs) ratios indicate that the gas is ionized by shocks outside 10 arcsec, but an AGN-like ionizing source could be present near the center. We speculate that a gas-rich minor merger happened some 100 Myr ago, causing the observed minor axis gas counterrotation, the recent star formation event and possibly some nuclear activity.
We have detected 535 planetary nebulae (PNs) in the flattened elliptical galaxy NGC 4697, using the classic on-band, off-band filter technique with the Focal Reducer and Spectrograph (FORS) at the Cassegrain focus of the first 8meter telescope unit of the ESO Very Large Telescope. From our photometry we have built the [O III] λ5007 planetary nebula luminosity function (PNLF) of NGC 4697. It indicates a distance of (10.5 ± 1) Mpc to this galaxy, in good agreement with the distance obtained from surface brightness fluctuations and substantially smaller than a previous estimate of 24 Mpc used in earlier dynamical
We present the weak lensing analysis of the Wide-Field Imager SZ Cluster of galaxy (WISCy) sample, a set of 12 clusters of galaxies selected for their Sunyaev-Zel'dovich (SZ) effect. After developing new and improved methods for background selection and determination of geometric lensing scaling factors from absolute multi-band photometry in cluster fields, we compare the weak lensing mass estimate with public X-ray and SZ data. We find consistency with hydrostatic X-ray masses with no significant bias, no mass dependent bias and less than 20% intrinsic scatter and constrain f gas,500c = 0.128 +0.029 −0.023 . We independently calibrate the South Pole Telescope significance-mass relation and find consistency with previous results. The comparison of weak lensing mass and Planck Compton parameters, whether extracted selfconsistently with a mass-observable relation (MOR) or using X-ray prior information on cluster size, shows significant discrepancies. The deviations from the MOR strongly correlate with cluster mass and redshift. This could be explained either by a significantly shallower than expected slope of Compton decrement versus mass and a corresponding problem in the previous X-ray based mass calibration, or a size or redshift dependent bias in SZ signal extraction.
The first 2 months of spectroscopic and photometric monitoring of the nearby Type Ic SN 2007gr are presented. The very early discovery (less than 5 days after the explosion) and the relatively short distance of the host galaxy motivated an extensive observational campaign. SN 2007gr shows an average peak luminosity but unusually narrow spectral lines and an almost flat photospheric velocity profile. The detection of prominent carbon features in the spectra is shown and suggests a wide range in carbon abundance in stripped-envelope supernovae. SN 2007gr may be an important piece in the puzzle of the observed diversity of CC SNe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.