State-of-the-art rainfall products obtained by satellites are often the only way of measuring rainfall in remote areas of the world. However, it is well known that they may fail in properly reproducing the amount of precipitation reaching the ground, which is of paramount importance for hydrological applications. To address this issue, an integration between satellite rainfall and soil moisture SM products is proposed here by using an algorithm, SM2RAIN, which estimates rainfall from SM observations. A nudging scheme is used for integrating SM-derived and state-of-the-art rainfall products. Two satellite rainfall products are considered: H05 provided by EUMESAT and the real-time (3B42-RT) TMPA product provided by NASA. The rainfall dataset obtained through SM2RAIN, SM2R ASC , considers SM retrievals from the Advanced Scatterometer (ASCAT). The rainfall datasets are compared with quality-checked daily rainfall observations throughout the Italian territory in the period 2010-13. In the validation period 2012-13, the integrated products show improved performances in terms of correlation with an increase in median values, for 5-day rainfall accumulations, of 26% (18%) when SM2R ASC is integrated with the H05 (3B42-RT) product. Also, the median root-mean-square error of the integrated products is reduced by 18% and 17% with respect to H05 and 3B42-RT, respectively. The integration of the products is found to improve the threat score for medium-high rainfall accumulations. Since SM2R ASC , H05, and 3B42-RT datasets are provided in near-real time, their integration might provide more reliable rainfall products for operational applications, for example, for flood and landslide early warning systems.
The EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) was established by the EUMETSAT Council on 3 July 2005, starting activity on 1 September 2005. The Italian Meteorological Service serves as Leading Entity on behalf of twelve European member countries. H-SAF products include precipitation, soil moisture and snow parameters. Some products are based only on satellite observations, while other products are based on the assimilation of satellite measurements/products into numerical models. In addition to product development and generation, H-SAF includes a product validation program and a hydrological validation program that are coordinated, respectively, by the Italian Department of Civil Protection and by the Polish Institute of Meteorology and Water Management. The National Center of Aeronautical Meteorology and Climatology (CNMCA) of the Italian Air Force is responsible for operational product generation and dissemination.
In this paper we describe the H-SAF precipitation algorithms and products, which have been developed by the Italian Institute of Atmospheric Sciences and Climate (in collaboration with the international community) and by CNMCA during the Development Phase (DP, 2005–2010) and the first Continuous Development and Operations Phase (CDOP-1, 2010–2012). The precipitation products are based on passive microwave measurements obtained from radiometers onboard different sun-synchronous low-Earth-orbiting satellites (especially, the SSM/I and SSMIS radiometers onboard DMSP satellites and the AMSU-A + AMSU-B/MHS radiometer suites onboard EPS-MetOp and NOAA-POES satellites), as well as on combined infrared/passive microwave measurements in which the passive microwave precipitation estimates are used in conjunction with SEVIRI images from the geostationary MSG satellite. Moreover, the H-SAF product generation and dissemination chain and independent product validation activities are described. Also, the H-SAF program and its associated activities that currently are being carried out or are planned to be performed within the second CDOP phase (CDOP-2, 2012–2017) are presented in some detail. Insofar as CDOP-2 is concerned, it is emphasized that all algorithms and processing schemes will be improved and enhanced so as to extend them to satellites that will be operational within this decade – particularly the geostationary Meteosat Third Generation satellites and the low-Earth-orbiting Core Observatory of the international Global Precipitation Measurement mission. Finally, the role of H-SAF within the international science and operations community is explained
Abstract. The development phase (DP) of the EUMETSAT Satellite Application Facility for Support to Operational Hydrology and Water Management (H-SAF) led to the design and implementation of several precipitation products, after 5 yr (2005)(2006)(2007)(2008)(2009)(2010) of activity. Presently, five precipitation estimation algorithms based on data from passive microwave and infrared sensors, on board geostationary and sun-synchronous platforms, function in operational mode at the H-SAF hosting institute to provide near real-time precipitation products at different spatial and temporal resolutions.In order to evaluate the precipitation product accuracy, a validation activity has been established since the beginning of the project. A Precipitation Product Validation Group (PPVG) works in parallel with the development of the estimation algorithms with two aims: to provide the algorithm developers with indications to refine algorithms and products, and to evaluate the error structure to be associated with the operational products.In this paper, the framework of the PPVG is presented: (a) the characteristics of the ground reference data available to H-SAF (i.e. radar and rain gauge networks), (b) the agreed upon validation strategy settled among the eight European countries participating in the PPVG, and (c) the steps of the validation procedures. The quality of the reference data is discussed, and the efforts for its improvement are outlined, with special emphasis on the definition of a ground radar Published by Copernicus Publications on behalf of the European Geosciences Union. S. Puca et al.:The validation service of the hydrological SAF geostationary products quality map and on the implementation of a suitable rain gauge interpolation algorithm. The work done during the H-SAF development phase has led the PPVG to converge into a common validation procedure among the members, taking advantage of the experience acquired by each one of them in the validation of H-SAF products. The methodology is presented here, indicating the main steps of the validation procedure (ground data quality control, spatial interpolation, upscaling of radar data vs. satellite grid, statistical score evaluation, case study analysis).Finally, an overview of the results is presented, focusing on the monthly statistical indicators, referred to the satellite product performances over different seasons and areas.
Abstract. The EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) provides rainfall estimations based on infrared and microwave satellite sensors on board polar and geostationary satellites. The validation of these satellite estimations is performed by the H-SAF Precipitation Product Validation Group (PPVG). A common validation methodology has been defined inside the PPVG in order to make validation results from several institutes comparable and understandable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.