Reverse Osmosis (RO) membrane fouling is one of the main challenges that membrane manufactures, the scientific community and industry professionals have to deal with. The consequences of this inevitable phenomenon have a negative effect on the performance of the desalination system. Predicting fouling in RO systems is key to evaluating the long-term operating conditions and costs. Much research has been done on fouling indices, methods, techniques and prediction models to estimate the influence of fouling on the performance of RO systems. This paper offers a short review evaluating the state of industry knowledge in the development of fouling indices and models in membrane systems for desalination in terms of use and applicability. Despite major efforts in this field, there are gaps in terms of effective methods and models for the estimation of fouling in full-scale RO desalination plants. In existing models applied to full-scale RO desalination plants, neither the spacer geometry of membranes, nor the efficiency and frequency of chemical cleanings are considered.
Transport models in reverse osmosis (RO) desalination have been extensively studied taking into account various factors such as temperature, fouling, etc. However, there are not many models that describe the behavior of a desalination plant over long time periods. These models depend on operating time and empirical parameters to estimate the flux or the average water permeability coefficient (A) decline. The proposed model separates the decline of A in two stages, the first stage refers to a more pronounced decline due to initial compaction and irreversible fouling and the second stage describes a more stable period with less slope. The model is based on the superposition of two exponential functions, which depends on operating time, empirical parameters and fouling potential of the feedwater (k fp). Ten years operating data of a brackish water reverse osmosis (BWRO) desalination plant were used. The obtained results with the proposed model showed a slightly better fit than previous models, but giving meaning to two different behaviors separated in two stages.
Reverse osmosis (RO) is the most widely used technology to desalinate brackish water and seawater. Significant efforts have been made in recent decades to improve RO efficiency. Feed spacer geometry design is a very important factor in RO membrane performance. In this work, correlations based on computational fluid dynamics and experimental work were applied in an algorithm to simulate the effect of different feed spacer geometries in full-scale brackish water reverse osmosis (BWRO) membranes with different permeability coefficients. The aim of this work was to evaluate the impact of feed spacers in conjunction with the permeability coefficients on membrane performance. The results showed a greater impact of feed spacer geometries in the membrane with the highest water permeability coefficient (A). Studying only one single element in a series, variations due to feed spacer geometries were observed in specific energy consumption ( S E C ) and permeate concentration ( C p ) of about 6.83% and 10.42%, respectively. Allowing the rolling of commercial membranes with different feed spacer geometries depending on the operating conditions could optimize the RO process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.