We studied morphological changes in a quasitwo-dimensional Langmuir film of low molar mass poly(Llactide) upon increasing the surface density, starting from randomly distributed molecules to a homogeneous monolayer of closely packed molecules, followed by nucleation and growth of mesoscopic, three-dimensional clusters from an overcompressed monolayer. The corresponding nucleation density of mesoscopic clusters within the monolayer can be tailored through variation of the rate of compression. For a given surface density and temperature, the nucleation probability was found to increase linearly with the rate of compression, allowing to adjust the density of mesoscopic clusters over nearly 2 orders of magnitude.
We have investigated the morphologies of Langmuir layers of charged, polymeric hard-core/interlayer/soft-shell nanoparticles spread at the air-water interface. Depending on various mutual interactions, which are correlated to the areal densities of the deposited nanoparticles, we observed ordered patterns of nondense and closed-packed arrangements of core/interlayer/shell (CIS) nanoparticle ordering. At low areal densities, we found an almost regular distribution of the charged CIS nanoparticles on the water surface, which resulted from long-range repulsive electrostatic interactions between them. At higher areal densities, domains of more closely packed and ordered nanoparticles were formed, coexisting with regions of randomly and sparsely distributed nanoparticles. We relate these domains to the interplay of electrostatic repulsion and capillary attraction caused by the dipolar character of like-charged particles at the interface, allowing for a characteristic separation distance between nanoparticles of about 3-4 times the nanoparticle diameter. At relatively high areal densities, attractive van der Waals forces were finally capable of making nanoparticles to come in contact with each other, leading to densely packed patches of hexagonally ordered nanoparticles coexisting with regions of rather well-ordered nanoparticles separated by about 1 μm and regions of randomly and sparsely distributed nanoparticles. Intriguingly, upon re-expansion of the area available per nanoparticle, these densely packed patches disappeared, indicating that steric repulsion due to the presence of soft shells as well as long-range electrostatic repulsive forces were strong enough to assure reversibility of the morphological behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.