Incorporation of a tailor-made size-restricted dithia-aza-oxa macrocycle, 1-oxa-4,10-dithia-7-aza-cyclododecane, via a phenyl linker into two fluorescent sensor molecules with electronically decoupled, rigidly fixed, and sterically preoriented architectures, a 1,3,5-triaryl-Delta2-pyrazoline and a meso-substituted boron-dipyrromethene (BDP), yields amplified fluorescence in the red-visible spectral range upon binding of Fe(III) ions. The response to Fe(III) and potentially interfering metal ions is studied in highly polar aprotic and protic solvents for both probes as well as in neat and buffered aqueous solution for one of the sensor molecules, the BDP derivative. In organic solvents, the fluorescence of both indicators is quenched by an intramolecular charge or electron transfer in the excited state and coordination of Fe(III) leads to a revival of their fluorescence without pronounced spectral shifts. Most remarkably, the unbound BDP derivative shows dual emission in water and can be employed for the selective ratiometric signaling of Fe(III) in buffered aqueous solutions.
A charge transfer-type fluorescent molecular sensor consisting of a bisamidopyridine receptor and two styryl base chromophores shows H(2)PO(4)(-) and acetate-enhanced fluorescence due to the conversion of weak intramolecular hydrogen bonds into strong ones in the host-guest ensemble.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.