An experimental comparison of various functional neural networks for signature verification is performed. A signature database for the realization of the computing experiment is built. It is confirmed that up to a certain point, the increase of the decision rule dimension reduces the probability of signature verification error, with an increase in the number of neurons in the network reducing the number of errors. A higher-dimension multi-dimensional Bayes functional with stronger inter-feature correlation is found to perform better. The best result for the signature verification is obtained using networks of Bayesian multidimensional functional, with false acceptance rate of FRR = 0.0288 and false rejection rate of FAR = 0.0232.
Abstract:The modern encryption methods are reliable if strong keys (passwords) are used, but the human factor issue cannot be solved by cryptographic methods. The best variant is binding all authenticators (passwords, encryption keys, and others) to the identities. When a user is authenticated by biometrical characteristics, the problem of protecting a biometrical template stored on a remote server becomes a concern. The paper proposes several methods of generating keys (passwords) by means of the fuzzy extractors method based on signature parameters without storing templates in an open way.
This article discusses the problem of user identification and psychophysiological state assessment while writing a signature using a graphics tablet. The solution of the problem includes the creation of templates containing handwriting signature features simultaneously with the hidden registration of physiological parameters of a person being tested. Heart rate variability description in the different time points is used as a physiological parameter. As a result, a signature template is automatically generated for psychophysiological states of an identified person. The problem of user identification and psychophysiological state assessment is solved depending on the registered value of a physiological parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.