Featured Application: The Merging method might apply to publish the datasets sequentially from the different organizations where it will ensure more data utility and privacy. Abstract:We study the problem of privacy preservation in multiple independent data publishing. An attack on personal privacy which uses independent datasets is called a composition attack. For example, a patient might have visited two hospitals for the same disease, and his information is independently anonymized and distributed by the two hospitals. Much of the published work makes use of techniques that reduce data utility as the price of preventing composition attacks on published datasets. In this paper, we propose an innovative approach to protecting published datasets from composition attack. Our cell generalization approach increases both protection of individual privacy from composition attack and data utility. Experimental results show that our approach can preserve more data utility than the existing methods.
Privacy is an important concern in the society, and it has been a fundamental issue when to analyze and publish data involving human individual's sensitive information. Recently, the slicing method has been popularly used for privacy preservation in data publishing, because of its potential for preserving more data utility than others such as the generalization and bucketization approaches. However, in this paper, we show that the slicing method has disclosure risks for some absolute facts, which would help the adversary to find invalid records in the sliced microdata table, resulting in breach of individual privacy. To increase the privacy of published data in the sliced tables, a new method called value swapping is proposed in this work, aimed at decreasing the attribute disclosure risk for the absolute facts and ensuring the l‐diverse slicing. By value swapping, the published table contains no invalid information such that the adversary cannot breach the individual privacy. Experimental results also show that the NEW method is able to keep more data utility than the existing slicing methods in a published microdata table. Copyright © 2016 John Wiley & Sons, Ltd.
How can training performance data (e.g., running or walking routes) be collected, measured, and published in a mobile program while preserving user privacy? This question is becoming important in the context of the growing use of reward-based location-based service (LBS) applications, which aim to promote employee training activities and to share such data with insurance companies in order to reduce the healthcare insurance costs of an organization. One of the main concerns of such applications is the privacy of user trajectories, because the applications normally collect user locations over time with identities. The leak of the identified trajectories often results in personal privacy breaches. For instance, a trajectory would expose user interest in places and behaviors in time by inference and linking attacks. This information can be used for spam advertisements or individual-based assaults. To the best of our knowledge, no existing studies can be directly applied to solve the problem while keeping data utility. In this paper, we identify the personal privacy problem in a reward-based LBS application and propose privacy architecture with a bounded perturbation technique to protect user's trajectory from the privacy breaches. Bounded perturbation uses global location set (GLS) to anonymize the trajectory data. In addition, the bounded perturbation will not generate any visiting points that are not possible to visit in real time. The experimental results on real-world datasets demonstrate that the proposed bounded perturbation can effectively anonymize location information while preserving data utility compared to the existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.