The need to store massive volumes of spatio-temporal data has become a difficult task as GPS capabilities and wireless communication technologies have become prevalent to modern mobile devices. As a result, massive trajectory data are produced, incurring expensive costs for storage, transmission, as well as query processing. A number of algorithms for compressing trajectory data have been proposed in order to overcome these difficulties. These algorithms try to reduce the size of trajectory data, while preserving the quality of the information. In the context of this research work, we focus on both the privacy preservation and storage problem of spatio-temporal databases. To alleviate this issue, we propose an efficient framework for trajectories representation, entitled DUST (DUal-based Spatio-temporal Trajectory), by which a raw trajectory is split into a number of linear sub-trajectories which are subjected to dual transformation that formulates the representatives of each linear component of initial trajectory; thus, the compressed trajectory achieves compression ratio equal to M : 1. To our knowledge, we are the first to study and address k-NN queries on nonlinear moving object trajectories that are represented in dual dimensional space. Additionally, the proposed approach is expected to reinforce the privacy protection of such data. Specifically, even in case that an intruder has access to the dual points of trajectory data and try to reproduce the native points that fit a specific component of the initial trajectory, the identity of the mobile object will remain secure with high probability. In this way, the privacy of the k-anonymity method is reinforced. Through experiments on real spatial datasets, we evaluate the robustness of the new approach and compare it with the one studied in our previous work. established as trajectory or mobility mining [1]. Also, the technology of databases is evolving to support the querying and representation of the trajectory of moving objects (e.g., humans, animals, vehicles, natural phenomena). Hence, the main parts of trajectory data-mining include pre-processing, data management, query processing, trajectory data-mining tasks, and privacy protection [2].Real-life applications, such as the analysis of traffic congestion, intelligent transportation, animal immigration habits analysis, cellular communications, military applications, structural and environmental monitoring, disaster/rescue management, as well as remediation, Geographic Information Systems (GIS), Location-Based Services (LBS), and other domains have increased the interest in the area of trajectory data-mining and efficient management of spatio-temporal data.It should be noted that the explosive growth of social media has produced large-scale mobility datasets whose publication puts people's personal lives at severe risk. Indeed, users get used to sharing their most-visited or potentially sensitive locations, such as their home, workplace, and holiday locations that are easy to obtain through social media. No...