Plant diseases are one of the grand challenges that face the agriculture sector worldwide. In the United States, crop diseases cause losses of one-third of crop production annually. Despite the importance, crop disease diagnosis is challenging for limited-resources farmers if performed through optical observation of plant leaves’ symptoms. Therefore, there is an urgent need for markedly improved detection, monitoring, and prediction of crop diseases to reduce crop agriculture losses. Computer vision empowered with Machine Learning (ML) has tremendous promise for improving crop monitoring at scale in this context. This paper presents an ML-powered mobile-based system to automate the plant leaf disease diagnosis process. The developed system uses Convolutional Neural networks (CNN) as an underlying deep learning engine for classifying 38 disease categories. We collected an imagery dataset containing 96,206 images of plant leaves of healthy and infected plants for training, validating, and testing the CNN model. The user interface is developed as an Android mobile app, allowing farmers to capture a photo of the infected plant leaves. It then displays the disease category along with the confidence percentage. It is expected that this system would create a better opportunity for farmers to keep their crops healthy and eliminate the use of wrong fertilizers that could stress the plants. Finally, we evaluated our system using various performance metrics such as classification accuracy and processing time. We found that our model achieves an overall classification accuracy of 94% in recognizing the most common 38 disease classes in 14 crop species.
With recent advances in both AI and IoT capabilities, it is possible than ever to implement surveillance systems that can automatically identify people who might represent a potential security threat to the public in real-time. Imagine a surveillance camera system that can detect various on-body weapons, masked faces, suspicious objects and traffic. This system could transform surveillance cameras from passive sentries into active observers which would help in preventing a possible mass shooting in a school, stadium or mall. In this paper, we present a prototype implementation of such systems, Hawk-Eye, an AI-powered threat detector for smart surveillance cameras. Hawk-Eye can be deployed on centralized servers hosted in the cloud, as well as locally on the surveillance cameras at the network edge. Deploying AI-enabled surveillance applications at the edge enables the initial analysis of the captured images to take place on-site, which reduces the communication overheads and enables swift security actions. At the cloud side, we built a Mask R-CNN model that can detect suspicious objects in an image captured by a camera at the edge. The model can generate a high-quality segmentation mask for each object instance in the image, along with the confidence percentage and classification time. The camera side used a Raspberry Pi 3 device, Intel Neural Compute Stick 2 (NCS 2), and Logitech C920 webcam. At the camera side, we built a CNN model that can consume a stream of images directly from an on-site webcam, classify them, and displays the results to the user via a GUI-friendly interface. A motion detection module is developed to capture images automatically from the video when a new motion is detected. Finally, we evaluated our system using various performance metrics such as classification time and accuracy. Our experimental results showed an average overall prediction accuracy of 94% on our dataset.
Small‐to‐medium businesses are always seeking affordable ways to advertise their products and services securely. With the emergence of mobile technology, it is possible than ever to implement innovative Location‐Based Advertising (LBS) systems using smartphones that preserve the privacy of mobile users. In this paper, we present a prototype implementation of such systems by developing a distributed privacy‐preserving system, which has parts executing on smartphones as a mobile app, as well as a web‐based application hosted on the cloud. The mobile app leverages Google Maps libraries to enhance the user experience in using the app. Mobile users can use the app to commute to their daily destinations while viewing relevant ads such as job openings in their neighborhood, discounts on favorite meals, etc. We developed a client‐server privacy architecture that anonymizes the mobile user trajectories using a bounded perturbation strategy. A multi‐modal sensing approach is proposed for modeling the context switching of the developed LBS system, which we represent as a Finite State Machine model. The multi‐modal sensing approach can reduce the power consumed by mobile devices by automatically detecting sensing mode changes to avoid unnecessary sensing. The developed LBS system is organized into two parts: the business side and the user side. First, the business side allows business owners to create new ads by providing the ad details, Geo‐location, photos, and any other instructions. Second, the user side allows mobile users to navigate through the map to see ads while walking, driving, bicycling, or quietly sitting in their offices. Experimental results are presented to demonstrate the scalability and performance of the mobile side. Our experimental evaluation demonstrates that the mobile app incurs low processing overhead and consequently has a small energy footprint.
The increasing ubiquity of network traffic and the new online applications’ deployment has increased traffic analysis complexity. Traditionally, network administrators rely on recognizing well-known static ports for classifying the traffic flowing their networks. However, modern network traffic uses dynamic ports and is transported over secure application-layer protocols (e.g., HTTPS, SSL, and SSH). This makes it a challenging task for network administrators to identify online applications using traditional port-based approaches. One way for classifying the modern network traffic is to use machine learning (ML) to distinguish between the different traffic attributes such as packet count and size, packet inter-arrival time, packet send–receive ratio, etc. This paper presents the design and implementation of NetScrapper, a flow-based network traffic classifier for online applications. NetScrapper uses three ML models, namely K-Nearest Neighbors (KNN), Random Forest (RF), and Artificial Neural Network (ANN), for classifying the most popular 53 online applications, including Amazon, Youtube, Google, Twitter, and many others. We collected a network traffic dataset containing 3,577,296 packet flows with different 87 features for training, validating, and testing the ML models. A web-based user-friendly interface is developed to enable users to either upload a snapshot of their network traffic to NetScrapper or sniff the network traffic directly from the network interface card in real time. Additionally, we created a middleware pipeline for interfacing the three models with the Flask GUI. Finally, we evaluated NetScrapper using various performance metrics such as classification accuracy and prediction time. Most notably, we found that our ANN model achieves an overall classification accuracy of 99.86% in recognizing the online applications in our dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.