The aqueous humor supplies nutrients to the nonvascularized cornea, lens, and trabecular meshwork. A number of tissue growth factors have been detected in this fluid. The composition of these proteins changes dramatically with different ocular conditions, such as inflammation and glaucoma. In this review, an overview of new findings regarding effects of aqueous humor growth factors is given. Our main emphasis is on the regulation of the avascular anterior eye compartment, the possible role of growth factors in the pathogenesis of glaucoma, and the importance of growth factors for the special immunosuppressive status of the anterior chamber.
Aim: To report on the intraindividual and interindividual variability of tumour size (height and base diameter) measurements using standardised echography in a masked prospective study. Methods: 20 consecutive eyes of 20 patients were examined on four different visits by three experienced examiners using standardised echography. As common in standardised echography, tumour height was evaluated with A-scan technique, while transverse and longitudinal base diameter were calculated with B-scan. Results: Tumour height measurements using A-scan were more accurate than base diameter measurements using B-scan. The standard deviation for tumour height over all visits/measurements was 0.18 mm (A-scan), 0.79 mm for transverse, and 0.69 mm for longitudinal base diameters (B-scan). The interclass correlation coefficient (ICC) was much higher for tumour height measurements with A-scan (0.7735 for three examiners on one visit) than for transverse (0.6563) or longitudinal (0.4522) base diameter measurements with B-scan techniques. Conclusions: A-scan techniques for tumour height measurements provide very reproducible results with little intraindividual and interobserver variability. As B-scan techniques for tumour base evaluation are less accurate they should be used for topographic and morphological examinations. S everal approaches in the management of uveal melanoma exist, mainly depending on the size of the tumour. [1][2][3][4][5][6] In the past 20 years an increasing percentage of patients has been treated with globe preserving therapies. Thus, it is important to have reliable parameters indicating whether the treated lesions decrease in size over time or remain unchanged. In addition, most ophthalmo-oncologists prefer to follow small melanocytic lesions until tumour growth is observed before a treatment is initiated. In these cases standardised A-scan echography is the most commonly used technique for biometry of the eye. It is also essential to establish the diagnosis of uveal melanoma using specific criteria. 7Standardised echography was introduced in the 1960s by Ossoinig for the purpose of ophthalmic tissue differentiation. The term standardised echography refers to a special examination technique which is based on the use of a standardised A-scan instrument especially developed for tissue differentiation. It is complemented by a real time contact B-scan. [8][9][10][11][12] Standardised A-scan is characterised by special signal processing through defined parameters, the so called "internal standardisation" which is provided by the manufacturer (narrowband receiver, special S-shaped type of amplification with a well defined dynamic range, high frequency filtering, etc]. 13 The "external standardisation" is performed by the examiner and includes the ascertainment of the "tissue sensitivity setting," which is optimal for tissue diagnosis. 14 However, besides specially designed equipment, the term standardised echography also implies a standardisation of the A-scan and B-scan examination of the globe and orbit. Meanwhile...
Screening for amblyopia meets the basic requirements of cost-effectiveness.
In the investigated szenario a therapy of neovascular AMD with ranibizumab is cost-effective for all angiographic subtypes as well as in the sensitivity analysis.
Introduction: Primary open-angle glaucoma (POAG) is one of the leading causes of blindness. Activation of optic nerve head astrocytes (ONHA) and loss of trabecular meshwork cells (TMC) are pathognomonic for this neurodegenerative disease. Oxidative stress and elevated levels of transforming growth factor beta (TGFβ) play an important role in the pathogenesis of POAG. This study investigates the possible antiapoptotic and cytoprotective effects of minocycline on TMC and ONHA under oxidative stress and increased TGFβ levels. Methods: TMC and ONHA were treated with minocycline 1-150 µM. Possible toxic effects and IC 50 were evaluated after 48 hours. Cell proliferation and viability were examined in order to assess the protective effects of minocycline on TMC and ONHA. Expression of Bcl-2, XIAP, and survivin, as well as their mRNA expression, were assessed by real time polymerase chain reaction (RT-PCR) and Western Blot analysis 48 hours after treatment with minocycline alone and additional incubation with TGFβ-2 or oxidative stress. Results: Minocycline 1-75 µM showed no toxic effects on TMC and ONHA. Under conditions of oxidative stress, both TMC and ONHA showed an increase in viability and an ability to proliferate when treated with minocycline 20-40 µM. RT-PCR and Western blotting yielded an overexpression of Bcl-2, XIAP, and survivin when TMC or ONHA were treated with minocycline 20-40 µM under conditions of oxidative stress and when additionally incubated with TGFβ-2. Conclusion: Minocycline up to 75 µM does not have toxic effects on TMC and ONHA. Treatment with minocycline 20-40 µM led to increased viability and proliferation under oxidative stress and TGFβ-2, as well as overexpression of Bcl-2, XIAP, and survivin. This protective pathway may help to prevent apoptotic cell death of TMC and ONHA and therefore be a promising approach to avoidance of progression of glaucomatous degeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.