We have discovered a novel class of compounds active against hepatitis C virus (HCV), using a surrogate cellular system, HCV replicon cells. The leading compound in the series, ACH-806 (GS-9132), is a potent and specific inhibitor of HCV. The selection of resistance replicon variants against ACH-806 was performed to map the mutations conferring resistance to ACH-806 and to determine cross-resistance profiles with other classes of HCV inhibitors. Several clones emerged after the addition of ACH-806 to HCV replicon cells at frequencies and durations similar to that observed with NS3 protease inhibitors and NS5B polymerase inhibitors. Phenotypic analyses of these clones revealed that they are resistant to ACH-806 but remain sensitive to other classes of HCV inhibitors. Moreover, no significant change in the susceptibility to ACH-806 was found when the replicon cellular clones resistant to NS3 protease inhibitors and NS5B polymerase inhibitors were examined. Sequencing of the entire coding region of ACH-806-resistant replicon variants yielded several consensus mutations. Reverse genetics identified two single mutations in NS3, a cysteine-to-serine mutation at amino acid 16 and an alanine-to-valine mutation at amino acid 39, that are responsible for the resistance of the replicon variants to ACH-806. Both mutations are located at the N terminus of NS3 where extensive interactions with the central hydrophobic region of NS4A exist. These data provide evidence that ACH-806 inhibits HCV replication by a novel mechanism.Hepatitis C virus (HCV) is the leading cause of liver disease worldwide. It is estimated that 170 million individuals are infected with HCV (56). The current therapeutic combination of pegylated alpha interferon (IFN-␣) and ribavirin has a sustained viral response rate of ϳ50% in genotype 1 HCV-infected patients and is limited by the adverse effects of both agents (8, 13). Therefore, the development of oral anti-HCV agents with improved efficacy and better tolerance is urgently needed.HCV is an enveloped virus with a positive-stranded RNA genome of 9.6 kb. The viral genome encodes a large polyprotein that is cleaved cotranslationally and/or posttranslationally into at least 10 mature viral proteins: C, E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B (3, 26). Specific functions have been attributed to most of these viral proteins. For example, NS5B protein has an RNA-dependent RNA polymerase activity, the amino-terminal domain of NS3 carries serine protease activity, and NS4A is a cofactor of NS3 which enhances NS3 protease activity by forming a stable heterodimeric complex with NS3 (4,5,24,26,28,30). Both NS5B polymerase and NS3 protease have been the prime targets for the development of HCV-specific agents. To date, multiple small molecules against the two targets have been reported (7,17,18,48), and some of them have shown antiviral activity in HCV-infected patients (9,20,42,43,44,54).Among HCV-specific inhibitors discovered so far, NS5B nucleoside analogs target the polymerase catalytic site of NS5B. T...