There are several approaches to quantum gravitational corrections of black hole thermodynamics. String theory and loop quantum gravity, by direct analysis on the basis of quantum properties of black holes, show that in the entropy-area relation the leading order correction should be of log-area type. On the other hand, generalized uncertainty principle(GUP) and modified dispersion relations(MDRs) provide perturbational framework for such modifications. Although both GUP and MDRs are common features of all quantum gravity scenarios, their functional forms are quantum gravity model dependent. Since both string theory and loop quantum gravity give more reliable solution of the black hole thermodynamics, one can use their results to test approximate results of GUP and MDRs. In this paper, we find quantum corrected black hole thermodynamics in the framework of GUP and MDR and then we compare our results with string theory solutions. This comparison suggests severe constraints on the functional form of GUP and MDRs. These constraints may reflect characteristic features of ultimate quantum gravity theory.
In this paper we consider a model universe with large extra dimensions to obtain a modified black hole entropy-area relation. We use the generalized uncertainty principle to find a relation between the number of spacetime dimensions and the presence or vanishing of logarithmic prefactor in the black hole entropy-area relation. Our calculations are restricted to the microcanonical ensembles and we show that in the modified entropy-area relation, the microcanonical logarithmic prefactor appears only when spacetime has an even number of dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.