???This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." ???Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.???We propose weakly-constrained stream and block codes with tunable pattern-dependent statistics and demonstrate that the block code capacity at large block sizes is close to the the prediction obtained from a simple Markov model published earlier. We demonstrate the feasibility of the code by presenting original encoding and decoding algorithms with a complexity log-linear in the block size and with modest table memory requirements. We also show that when such codes are used for mitigation of patterning effects in optical fibre communications, a gain of about 0.5 dB is possible under realistic conditions, at the expense of small redundancy (???10%)
The impact of the fiber Kerr effect on error statistics in the nonlinear (high power) transmission of the OFDM 16-QAM signal over a 2000 km EDFA-based link is examined. We observed and quantified the difference in the error statistics for constellation points located at three power-defined rings. Theoretical analysis of a trade-off between redundancy and error rate reduction using probabilistic coding of three constellation power rings decreasing the symbol-error rate of OFDM 16-QAM signal is presented. Based on this analysis, we propose to mitigate the nonlinear impairments using the adaptive modulation technique applied to the OFDM 16-QAM signal. We demonstrate through numerical modelling the system performance improvement by the adaptive modulation for the large number of OFDM subcarriers (more than 100). We also show that a similar technique can be applied to single carrier transmission.
We propose a theoretical method to estimate the saturation power and the small signal gain of an active Er-doped fiber as functions of the fiber length and the pump power. The results make it possible to carry out the numerical simulation of a given Er-doped fiber. The results allow us to carry out the optimization of fiber laser systems by means of a numerical simulation using the nonlinear Schrödinger equation.
We quantify the error statistics and patterning effects in a 5x40 Gbit/s WDM RZ-OOK SMF/DCF fibre link using hybrid Raman/EDFA amplification. By extensive use of a numerical model, we determine how the error statistics change with the transmission distance. This knowledge is used as a basis for a constrained coding technique in order to improve the transmission error rate. We propose an adaptive constrained code for mitigation of the patterning effects and demonstrate that this approach can substantially reduce the bit error rate (BER) even for very large values of the channel BER (BER > 10 −1 ). The proposed technique can be used in combination with forward error correction schemes (FEC) to extend the range of channel BERs that an FEC scheme is effective over.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.