In this paper, we focus on the fabrication and investigation of optical properties of W-type and Graded-index single-mode Bi-doped germanosilicate fibers. The laser and gain characteristics of Bi-doped fibers of new designs were studied. It was shown that by variation of doping profile, it is possible to change characteristic parameters (active absorption, unsaturable loss level) of the active medium and, as a consequence, achieve an improvement of the performance of the optical devices based on these types of fibers. As a progress one can consider the creation of a Bi-doped fiber laser operating at 1460 nm with a record efficiency of 72% using a relatively short active fiber (L = 75 m); and a 20-dB Bi-doped fiber amplifier (L = 120 m) with a pump power of 45 mW (for the input signal powers lower than 30 µW) having a high gain efficiency of 0.52 dB/mW. We suggest that the obtained results could be a driver for further investigation in this direction.
For the first time, to the best of the authors’ knowledge, a cladding-pumped bismuth-doped fiber laser (BDFL) is demonstrated. A “home-made” Bi-doped germanosilicate fiber with a 125 µm circular outer cladding made of fused silica and coated by a low refractive index polymer is used as an active medium pumped by commercial multimode laser diodes with a total output power of 25 W at 808 nm. We find that the BDFL with a free-running cavity (when feedback is provided by ≈4% back reflection from two bare right-angle cleaved fiber ends) composed of a 100-m-long bismuth-doped fiber is capable of emitting at a wavelength of 1440 nm. A slope efficiency of 0.5% with respect to the absorbed pump power with a maximum output power of ≈50 mW is obtained in a BDFL with a cavity formed by a highly reflective Bragg grating at 1461 nm and a right-angle cleaved fiber end. The beam quality factors (M2) of the output BDFL in the horizontal and vertical directions are measured to be 1.18 and 1.13, respectively. The processes affecting the efficiency of the BDFLs are also discussed. The possible improvements for the output power scaling and increasing the efficiency of the cladding-pumped BDFLs are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.