The quantum efficiency of GaN-based light-emitting diodes (LEDs) is investigated at temperatures 77–300 K. It is found that the efficiency droop is due to a decrease in the internal quantum efficiency (IQE) in the low-energy part of the emission spectrum. The efficiency starts to decrease at a temperature independent forward voltage of Umax≈2.9 V. At this voltage tunneling current through the LED-structure begins to dominate. It is suggested that the external quantum efficiency droop is related to reduction of the IQE due to tunneling leakage of carriers from the quantum well (QW) to defect states in barriers, and to reduction of the injection efficiency by excess tunneling current under QW through deep defect states in barriers.
Articles you may be interested inDeep ultraviolet photopumped stimulated emission from partially relaxed AlGaN multiple quantum well heterostructures grown on sapphire substrates
Articles you may be interested inGaN epitaxial films grown by hydride vapor phase epitaxy on polycrystalline chemical vapor deposition diamond substrates using surface nanostructuring with TiN or anodic Al oxide Effect of sapphire-substrate thickness on the curvature of thick GaN films grown by hydride vapor phase epitaxy
We have studied epitaxial GaN layers grown by hydride vapour phase epitaxy (HVPE) on porous GaN sublayers formed on SiC substrates. It was shown that these layers can be grown with good surface morphology and high crystalline quality. X-ray, Raman and photoluminescent (PL) measurements showed that the stress in the layers grown on porous GaN was reduced to 0.1-0.2 GPa, while the stress in the layers grown directly on 6H-SiC substrates remains at its usual level of about 1 GPa. Thus, we have shown that growth on porous GaN sublayer is a promising method for fabrication of high quality epitaxial layers of GaN with low strain values.
We report on AlN wafers fabricated by hydride vapor phase epitaxy (HVPE). AlN thick layers were grown on Si substrates by HVPE. Growth rate was up to 60 microns per hour. After the growth of AlN layers, initial substrates were removed resulting in free-standing AlN wafers. The maximum thickness of AlN layer was about 1 mm. AlN free-standing single crystal wafers with a thickness ranging from 0.05 to 0.8 mm were studied by x-ray diffraction, transmission electron microscopy, optical absorption, and cathodoluminescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.