This study aimed to evaluate the effect of mesenchymal stem cells (MSCs)–derived exosomes in retina regeneration of experimentally induced diabetes mellitus (DM) in a rabbit model. Exosomes are extracellular vesicles that contain many microRNAs (micRNAs), mRNAs, and proteins from their cells of origin. DM was induced by intravenous (IV) injection of streptozotocin in rabbits. MSCs were isolated from adipose tissue of rabbits. Exosomes were extracted from MSCs by ultracentrifugation. Exosomes were injected by different routes (IV, subconjunctival (SC), and intraocular (IO)). Evaluation of the treatment was carried out by histopathological examination of retinal tissues and assessment of micRNA-222 expression level in retinal tissue by real-time polymerase chain reaction. Histologically, by 12 weeks following SC exosomal treatment, the cellular components of the retina were organized in well-defined layers, while IO exosomal injection showed well-defined retinal layers which were obviously similar to layers of the normal retina. However, the retina appeared after IV exosomal injection as irregular ganglionic layer with increased thickness. MicRNA-222 expression level was significantly reduced in diabetic controls when compared to each of healthy controls and other diabetic groups with IV, SC, and IO routes of injected exosomes (0.06 ± 0.02 vs. 0.51 ± 0.07, 0.28 ± 0.08, 0.48 ± 0.06, and 0.42 ± 0.11, respectively). We detected a significant negative correlation between serum glucose and retinal tissue micRNA-222 expression level (r = −0.749, p = 0.001). We can associate the increased expression of micRNA-222 with regenerative changes of retina following administration of MSCs-derived exosomes. The study demonstrates the potency of rabbit adipose tissue–derived MSCs exosomes in retinal repair. So, exosomes are considered as novel therapeutic vectors in MSCs-based therapy through its role in shuttling of many factors including micRNA-222.
Purpose: To assess the effect of a novel intense pulsed light (IPL) therapy on tear proteins and lipids in eyes with Meibomian gland dysfunction (MGD). Methods: Twenty-four eyes of 12 patients with MGD were recruited and received five overlapping flashes (565-1400 nm) directed at the lower eyelid. The IPL parameters include intensity: 2.5 to 6.5 J/cm 2 , voltage: 100 to 240 V, frequency: 50 to 60 Hz, input: 16 W, maximum optical energy: 23 J, pulse duration: <2.0 ms, and repetition time: 1-3.5 s. Tear samples were evaluated immediately before and 2 weeks after IPL therapy and included measurements of protein concentration, electrophoretic mobility by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, lipid profile assessments, and thin-layer chromatography (TLC) for phospholipids. Results: Significant improvements were observed in tear protein concentrations and molecular weight after IPL therapy. The most pronounced effect was in the molecular weight of tear lysozyme, lactoferrin, and albumin. Tear lipids showed an improvement in the concentrations of total lipids, triglycerides, cholesterol, and phospholipids. On TLC, the tears in patients with MGD had significantly lower amounts of anionic phosphatidylethanolamine, phosphatidylinositol, and phosphatidylserine but amounts zwitterionic neutral phospholipid phosphatidylcholine were normal. These anionic phospholipids showed obvious recovery after IPL therapy. Conclusion: IPL therapy is effective in eyes with MGD. It improved tear protein and lipid content and composition. The anionic phospholipids were more responsive to IPL therapy than were the other zwitterionic phospholipids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.