These studies used multilevel modelling to examine optimised peak power (PPopt) from a force velocity test over the age range 12–14 years. In the first study, body mass, stature, triceps and subscapular skinfold thicknesses of boys and girls, aged 12.3 ± 0.3 y at the onset of the study, were measured on four occasions at 6 monthly intervals. The analysis was founded on 146 PPopt determinations (79 from boys and 67 from girls). Body mass and stature were significant explanatory variables with sum of two skinfolds exerting an additional effect. No gender differences were evident but PPopt increased with age. In the second study, thigh muscle volume (TMV) was estimated using magnetic resonance imaging at test occasions two and four. The analysis, founded on a subsample of 67 PPopt determinations (39 from boys and 28 from girls), demonstrated TMV to be a significant additional explanatory variable alongside body mass and stature with neither age nor gender making a significant contribution to PPopt. Together the studies demonstrate the influence of body size and TMV on young people’s PPopt.
Age- and sex-related differences in optimal peak power (PPopt) and associated measures determined using a force-velocity (F-V) cycling test were examined in pre teenage, teenage and adult males and females. Absolute PPopt increased significantly with age in both males and females. With body mass controlled for using allometric scaling significant age related increases remained, an effect masked in the females when PPopt was expressed as W • kg−1. Sex differences in PPopt were minimal in the preteens but males demonstrated higher PPopt than females in both teenage and adult groups. These patterns of change with age and sex broadly reflect those obtained for Wingate Anaerobic Test determined PP but the use of a single non-optimized braking force underestimates the magnitude of any differences observed.
The nonwoven industry is one of the most innovative and important branches of the global fiber products industry. However, the use of petrochemicalbased materials in many nonwoven products leads to severe environmental issues such as generation of microplastics. Synthetic material use in nonwovens is currently around 66%. This review covers potential technologies for the use of bio-based materials in nonwoven products. The current generation of nonwoven products relies heavily on the use of synthetic binders and fibers. These materials allow for products with high functional properties, such as permanence, strength, bulk, and haptic properties. The next generation of nonwoven products will have a higher fraction of natural and renewable materials as both binders and fiber elements. There are a wide range of materials under investigation in various nonwoven product categories. Especially, lignocellulosic materials are of interest. This includes traditional pulp fibers, regenerated cellulose fibers, lignin binders and nanomaterials derived from wood. The development of water stable, strong interfiber bonding concepts is one of the main problems to be solved for advancing biobased nonwoven products.
We purposed to study energy expenditure, power output and gross efficiency during kayak ergometer exercise in 12 elite sprint kayakers. 6 males (age 24.2±4.8 years, height 180.4±4.8 cm, body mass 79.7±8.5 kg) and 6 females (age 24.3±4.5 years, height 164.5±3.9 cm, body mass 65.4±3.5 kg), performed an incremental intermittent protocol on kayak ergometer with VO2 and blood lactate concentration assessment, a non-linear increase between power output and energy expenditure being observed. Paddling power output, energy expenditure and gross efficiency corresponding to VO2max averaged 199.92±50.41 W, 75.27±6.30 ml.kg - 1.min - 1, and 10.10±1.08%. Male kayakers presented higher VO2max, power output and gross efficiency at the VO2max, and lower heart rate and maximal lactate concentration than females, but no differences were found between genders regarding energy expenditure at VO2max. Aerobic and anaerobic components of energy expenditure evidenced a significant contribution of anaerobic energy sources in sprint kayak performance. Results also suggested the dependence of the gross efficiency on the changes in the amount of the aerobic and anaerobic contributions, at heavy and severe intensities. The inter-individual variance of the relationship between energy expenditure and the corresponding paddling power output revealed a relevant tracking for females (FDγ=0.73±0.06), conversely to the male group (FDγ=0.27±0.08), supporting that some male kayakers are more skilled in some paddling intensities than others.
Regular moderate exercise has been shown to have anti-inflammatory effects that help prevent several chronic diseases. However, the effects of chronic training an elite athletes have not been the focus of much research. This study aimed to determine whether there were differences in cytokine levels (IL-1β, IL-1ra, IL-6, IL-10, IL-18, IFN-γ, and TNF-α) in circulating peripheral blood (PB) between elite kayakers and nonathletes. Subjects were 13 elite male kayakers, aged 20.0 ± 3 years, with average body mass of 75.0 ± 7.9 kg and 177.3 ± 7.1 cm height and with a VO2max of 58.3 ± 7.8 mL·kg−1·min−1. The nonathletes were 7 men, aged 18.2 ± 1.1 years, body mass of 81.3 ± 13.8 kg, and 171.9 ± 4.5 cm height. Blood samples were collected after six weeks of offtraining and before the start of a new training season. PB leukocyte populations were determined by flow cytometry. Cytokine levels were quantified by ELISA. When nonathletes were compared with the kayakers, the latter exhibited lower plasma concentrations of IL-1β, IL-18, and IFN-γ as well as a lower concentration of IL-1ra. Positive correlations between IL-18 and B cells in the athletes were also found. These results seem to reinforce the anti-inflammatory role of regular training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.