The reaction of bis(triphenyl)tin oxide, (Ph3Sn)2O,
with 2,6-diisopropylphenylphosphate, (ArO)PO3H2 (Ar = 2,6-i-Pr2-C6H3), leads to the formation of a novel double-bicapped
hexanuclear monoorganooxotin cage, [(PhSn)6(μ-OH)2(μ3-O)2(μ-OEt)4{(ArO)PO3}4]. This reaction proceeds by a de-arylation
reaction involving the cleavage of Sn−C bonds.
In recent years, the Internet of Things (IoT) has been industrializing in various real-world applications, including smart industry and smart grids, to make human existence more reliable. An overwhelming volume of sensing data is produced from numerous sensor devices as the Industrial IoT (IIoT) becomes more industrialized. Artificial Intelligence (AI) plays a vital part in big data analyses as a powerful analytic tool that provides flexible and reliable information insights in real-time. However, there are some difficulties in designing and developing a useful big data analysis tool using machine learning, such as a centralized approach, security, privacy, resource limitations, and a lack of sufficient training data. On the other hand, Blockchain promotes a decentralized architecture for IIoT applications. It encourages the secure data exchange and resources among the various nodes of the IoT network, removing centralized control and overcoming the industry’s current challenges. Our proposed approach goal is to design and implement a consensus mechanism that incorporates Blockchain and AI to allow successful big data analysis. This work presents an improved Delegated Proof of Stake (DPoS) algorithm-based IIoT network that combines Blockchain and AI for real-time data transmission. To accelerate IIoT block generation, nodes use an improved DPoS to reach a consensus for selecting delegates and store block information in the trading node. The proposed approach is evaluated regarding energy consumption and transaction efficiency compared with the exciting consensus mechanism. The evaluation results reveal that the proposed consensus algorithm reduces energy consumption and addresses current security issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.