A black hole x-ray binary (XRB) system forms when gas is stripped from a normal star and accretes onto a black hole, which heats the gas sufficiently to emit x-rays. We report a polarimetric observation of the XRB Cygnus X-1 using the Imaging X-ray Polarimetry Explorer. The electric field position angle aligns with the outflowing jet, indicating that the jet is launched from the inner x-ray emitting region. The polarization degree is 4.01 ± 0.20% at 2 to 8 kiloelectronvolts, implying that the accretion disk is viewed closer to edge-on than the binary orbit. The observations reveal that hot x-ray emitting plasma is spatially extended in a plane perpendicular to the jet axis, not parallel to the jet.
We present a first catalog of sources detected by the Mikhail Pavlinsky ART-XC telescope on board the SRG observatory in the 4-12 keV energy band during its ongoing all-sky survey. The catalog comprises 867 sources detected on the combined map of the first two 6-month scans of the sky (December 2019 -December 2020), ART-XC sky surveys 1 and 2, or ARTSS12. The achieved sensitivity to point sources varies between ∼ 4 × 10 −12 erg s −1 cm −2 near the ecliptic plane and ∼ 8 × 10 −13 erg s −1 cm −2 (4-12 keV) near the ecliptic poles, and the typical localization accuracy is ∼ 15 . Of the 750 sources of known or suspected origin in the catalog, 56% are extragalactic (mostly active galactic nuclei, AGN; and clusters of galaxies) and the rest are Galactic (mostly cataclysmic variables, CVs; and low-and high-mass X-ray binaries). For 114 sources, ART-XC has detected X-rays for the first time. Although the majority of these (∼ 80) are expected to be spurious (given the adopted detection threshold), there can be a significant number of newly discovered astrophysical objects. We have started a program of optical follow-up observations of the new and previously unidentified X-ray sources, which has already led to the identification of several AGN and CVs. With the SRG all-sky survey planned to continue for a total of four years, we can expect the ART-XC survey in the 4-12 keV band to significantly surpass previous surveys that were carried out in similar (medium X-ray) energy bands in terms of the combination of angular resolution, sensitivity, and sky coverage.
We report on observations of the Be/X-ray binary system Swift J1626.6–5156 performed with the Nuclear Spectroscopic Telescope ARray (NuSTAR) during a short outburst in 2021 March, following its detection by the MAXI monitor and Spektrum–Roentgen–Gamma (SRG) observatory. Our analysis of the broadband X-ray spectrum of the source confirms the presence of two absorption-like features at energies E ∼ 9 and E ∼ 17 keV. These had been previously reported in the literature and interpreted as the fundamental cyclotron resonance scattering feature (CRSF) and its first harmonic (based on Rossi X-ray Timing Explorer (RXTE) data). The better sensitivity and energy resolution of NuSTAR, combined with the low-energy coverage of Neutron star Interior Composition Explorer (NICER), allowed us to detect two additional absorption-like features at E ∼ 4.9 keV and E ∼ 13 keV. Therefore, we conclude that, in total, four cyclotron lines are observed in the spectrum of Swift J1626.6–5156: the fundamental CRSF at E ∼ 4.9 keV and three higher spaced harmonics. This discovery makes Swift J1626.6–5156 the second accreting pulsar, after 4U 0115+63, whose spectrum is characterized by more than three lines of a cyclotronic origin, and implies that the source has the weakest confirmed magnetic field among all X-ray pulsars, B ∼ 4 × 1011 G. This discovery makes Swift J1626.6–5156 one of the prime targets for the upcoming X-ray polarimetry missions covering the soft X-ray band, such as Imaging X-ray Polarimetry Explorer (IXPE) and enhanced X-ray Timing and Polarimetry mission (eXTP).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.