In an effort to elucidate factors that determine the severity of an attack of acute pancreatitis, we have quantitated the extent of necrosis and of apoptosis in five different models of experimental acute pancreatitis. Severe pancreatitis was induced by obstructing the opossum common bile-pancreatic duct, by administering to mice 12 hourly injections of a supramaximally stimulating dose of caerulein, and by feeding young female mice a choline-deficient, ethionine-supplemented diet. In each of these models of severe pancreatitis, marked necrosis but very little apoptosis was found. Mild pancreatitis was induced by obstructing the rat common bile-pancreatic duct and by infusing rats with a supramaximally stimulating dose of caerulein. In contrast to our findings in severe pancreatitis, mild pancreatitis was characterized by very little necrosis but a high degree of apoptosis. Our finding that the severity of acute pancreatitis is inversely related to the degree of apoptosis suggests that apoptosis may be a teleologically beneficial response to acinar cell injury in general and especially in acute pancreatitis.
Rats infused with a supramaximally stimulating dose of the cholecystokinin (CCK) analog caerulein develop acute edematous pancreatitis. Using CCK-JMV-180, a recently developed CCK analog that acts as an agonist at high-affinity CCK receptors but antagonizes the effect of CCK at low-affinity receptors, we have determined that caerulein induces pancreatitis by interacting with low-affMnity CCK receptors. Those low-affinity receptors mediate CCK-induced inhibition of digestive enzyme secretion from the pancreas. Our observations, therefore, suggest that this form of experimental pancreatitis results from the inhibition of pancreatic digestive enzyme secretion.
The distribution, colocalisation, and interconnections of nitrinergic and peptidergic neurons and nerves in the human oesophagus were examined. Cryosections of surgically resected tissues from eight subjects were studied with indirect immunofluorescence for the presence of 11 neuropeptides and neuron specific enolase. After It has now been shown that nitric oxide or a related product of the L-arginine-nitric oxidesynthase pathway may participate in the oesophageal smooth muscle relaxation, latencies of oesophageal contraction, and oesophageal off contraction in the opossum as well as in humans. 13-16 Furthermore, the involvement of the nitric oxide synthase pathway in swallow induced peristaltic contractions in the opossum have been shown.17 Also, electrophysiological studies support the role of nitric oxide as the inhibitory mediator in the oesophageal smooth muscle. 18-23 In sharp contrast, there is no morphological information on the nitrinergic innervation of the human oesophagus.It is possible that the inhibitory neurotransmitters VIP and CGRP may act in concert with nitric oxide in the oesophageal smooth muscle. In some tissues neurally released VIP is thought to exert its effect by releasing nitric oxide from the smooth muscle.
We have previously reported that pretreatment of rats with capsaicin (an agent that ablates sensory neurons) or CP-96345 (a substance P receptor antagonist) dramatically inhibits fluid secretion and intestinal inflammation in ileal loops exposed to Clostridium difficile toxin A. The aim of this study was to determine whether calcitonin gene-related peptide (CGRP), a neuropeptide also found in sensory afferent neurons, participates in the enterotoxic effects of toxin A. Administration of toxin A was also found to increase CGRP content in dorsal root ganglia and ileal mucosa 60 min after toxin exposure. Furthermore, immunohistochemical studies demonstrated increased neuronal staining for CGRP 2 h after toxin A treatment. Pretreatment of rats with CGRP-(8—37), a specific CGRP antagonist, before instillation of toxin A into ileal loops significantly inhibited toxin-mediated fluid secretion (by 48%), mannitol permeability (by 83%), and histological damage. We conclude that CGRP, like substance P, contributes to the secretory and inflammatory effects of toxin A via increased production of this peptide from intestinal nerves, including primary sensory afferent neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.