Motoneuron responses to the inhibitory amino acids glycine and GABA, and the contribution of inhibitory synapses to developing sensorimotor synapses were studied in rat spinal cords during the last week in utero. In differentiating motoneurons, glycine and GABA induced Cl(-)-dependent membrane depolarizations and large decreases in membrane resistance. These responses gradually decreased during embryonic development, and at birth they were significantly smaller than in embryos. In motoneurons of embryos and neonates, dorsal root stimulation produced only depolarizing potentials, some of which reversed at -50 mV membrane potential. Reduction of extracellular Cl- concentrations increased the amplitude of these potentials, suggesting that they are generated by Cl- current. Contribution of Cl(-)-dependent potentials to compound dorsal root-evoked potentials was studied by determining the effects of glycine and GABA antagonists on them. In motoneurons of embryos at days 16-17 of gestation (D16-D17), strychnine or bicuculline blocked dorsal root-evoked potentials. This suppression was neither the result of a decrease in neuronal excitability nor the inhibition of glutamate receptors. Strychnine-evoked depression was not blocked by atropine, indicating that it was not due to disinhibition of muscarinic synapses. By D19, strychnine and bicuculline significantly increased dorsal root-evoked potentials rather than blocking them. This reversed function did not result from an increase in neuronal excitability or changes in the specificity of strychnine and bicuculline antagonism. The number of glycine- and GABA-immunoreactive cells increased 20% between D17 and D19. The number of immunoreactive cells and fibers significantly increased in the motor nuclei and dorsal horn laminae. These morphological changes may contribute to establishment of new synaptic contacts on motoneurons, thus changing the actions of strychnine and bicuculline on dorsal root-evoked potentials.
The distribution, colocalisation, and interconnections of nitrinergic and peptidergic neurons and nerves in the human oesophagus were examined. Cryosections of surgically resected tissues from eight subjects were studied with indirect immunofluorescence for the presence of 11 neuropeptides and neuron specific enolase. After It has now been shown that nitric oxide or a related product of the L-arginine-nitric oxidesynthase pathway may participate in the oesophageal smooth muscle relaxation, latencies of oesophageal contraction, and oesophageal off contraction in the opossum as well as in humans. 13-16 Furthermore, the involvement of the nitric oxide synthase pathway in swallow induced peristaltic contractions in the opossum have been shown.17 Also, electrophysiological studies support the role of nitric oxide as the inhibitory mediator in the oesophageal smooth muscle. 18-23 In sharp contrast, there is no morphological information on the nitrinergic innervation of the human oesophagus.It is possible that the inhibitory neurotransmitters VIP and CGRP may act in concert with nitric oxide in the oesophageal smooth muscle. In some tissues neurally released VIP is thought to exert its effect by releasing nitric oxide from the smooth muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.