Current state-of-the-art methodologies are mostly developed for stationary optimization problems. However, many real-world problems are dynamic in nature, where different types of changes may occur over time. Population-based approaches, such as evolutionary algorithms, are frequently used for solving dynamic environment problems. Selection hyper-heuristics are highly adaptive search methodologies that aim to raise the level of generality by providing solutions to a diverse set of problems having different characteristics. In this study, the performances of 35 single-point-search-based selection hyper-heuristics are investigated on continuous dynamic environments exhibiting various change dynamics, produced by the Moving Peaks Benchmark generator. Even though there are many successful applications of selection hyper-heuristics to discrete optimization problems, to the best of our knowledge, this study is one of the initial applications of selection hyper-heuristics to real-valued optimization as well as being among the very few which address dynamic optimization issues using these techniques. The empirical results indicate that learning selection hyper-heuristics incorporating compatible components can react to different types of changes in the environment and are capable of tracking them. This study shows the suitability of selection hyper-heuristics as solvers in dynamic environments.
Abstract. An apprenticeship-learning-based technique is used as a hyperheuristic to generate heuristics for an online combinatorial problem. It observes and learns from the actions of a known-expert heuristic on small instances, but has the advantage of producing a general heuristic that works well on other larger instances. Specifically, we generate heuristic policies for online bin packing problem by using expert near-optimal policies produced by a hyper-heuristic on small instances, where learning is fast. The "expert" is a policy matrix that defines an index policy, and the apprenticeship learning is based on observation of the action of the expert policy together with a range of features of the bin being considered, and then applying a k-means classification. We show that the generated policy often performs better than the standard best-fit heuristic even when applied to instances much larger than the training set.
Abstract. The aim of this study is to automatically generate facial composites in order to match a target face, by using the active appearance model (AAM). The AAM generates a statistical model of the human face from a training set. The model parameters control both the shape and the texture of the face. We propose a system in which a human user interactively tries to optimize the AAM parameters such that the parameters generate the target face. In this study, the optimization problem is handled through using nature-inspired approaches. Experiments with interactive versions of different nature-inspired heuristics are performed. In the interactive versions of these heuristics, users participate in the experiments either by quantifying the solution quality or by selecting the most similar faces. The results of the initial experiments are promising which promote further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.