Abstract. The aim of this study is to automatically generate facial composites in order to match a target face, by using the active appearance model (AAM). The AAM generates a statistical model of the human face from a training set. The model parameters control both the shape and the texture of the face. We propose a system in which a human user interactively tries to optimize the AAM parameters such that the parameters generate the target face. In this study, the optimization problem is handled through using nature-inspired approaches. Experiments with interactive versions of different nature-inspired heuristics are performed. In the interactive versions of these heuristics, users participate in the experiments either by quantifying the solution quality or by selecting the most similar faces. The results of the initial experiments are promising which promote further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.