Adult cardiac tissue undergoes a rapid process of dedifferentiation when cultured outside the body. The in vivo environment, particularly constant electromechanical stimulation, is fundamental to the regulation of cardiac structure and function. We investigated the role of electromechanical stimulation in preventing culture-induced dedifferentiation of adult cardiac tissue using rat, rabbit and human heart failure myocardial slices. Here we report that the application of a preload equivalent to sarcomere length (SL) = 2.2 μm is optimal for the maintenance of rat myocardial slice structural, functional and transcriptional properties at 24 h. Gene sets associated with the preservation of structure and function are activated, while gene sets involved in dedifferentiation are suppressed. The maximum contractility of human heart failure myocardial slices at 24 h is also optimally maintained at SL = 2.2 μm. Rabbit myocardial slices cultured at SL = 2.2 μm remain stable for 5 days. This approach substantially prolongs the culture of adult cardiac tissue in vitro.
AimsCardiac fibroblasts (CFs) are considered the principal regulators of cardiac fibrosis. Factors that influence CF activity are difficult to determine. When isolated and cultured in vitro, CFs undergo rapid phenotypic changes including increased expression of α-SMA. Here we describe a new model to study CFs and their response to pharmacological and mechanical stimuli using in vitro cultured mouse, dog and human myocardial slices.Methods and resultsUnloading of myocardial slices induced CF proliferation without α-SMA expression up to 7 days in culture. CFs migrating onto the culture plastic support or cultured on glass expressed αSMA within 3 days. The cells on the slice remained αSMA(−) despite transforming growth factor-β (20 ng/ml) or angiotensin II (200 µM) stimulation. When diastolic load was applied to myocardial slices using A-shaped stretchers, CF proliferation was significantly prevented at Days 3 and 7 (P < 0.001).ConclusionsMyocardial slices allow the study of CFs in a multicellular environment and may be used to effectively study mechanisms of cardiac fibrosis and potential targets.
The role of mammalian target of rapamycin (mTOR) inhibitors in de novo immunosuppression after lung transplantation is not well defined. We compared Everolimus versus mycophenolate mofetil in an investigator-initiated single-center trial in Hannover, Germany. A total of 190 patients were randomly assigned 1:1 on day 28 posttransplantation to mycophenolate mofetil (MMF) or Everolimus combined with cyclosporine A (CsA) and steroids. Patients were followed up for 2 years. The primary endpoint was freedom from bronchiolitis obliterans syndrome (BOS). The secondary endpoints were incidence of acute rejections, infections, treatment failure and kidney function. BOS-free survival in intention-to-treat (ITT) analysis was similar in both groups (p = 0.174). The study protocol was completed by 51% of enrolled patients. The per-protocol analysis shows incidence of bronchiolitis obliterans syndrome (BOS): 1/43 in the Everolimus group and 8/54 in the MMF group (p = 0.041). Less biopsy-proven acute rejection (AR) (p = 0.005), cytomegalovirus (CMV) antigenemia (p = 0.005) and lower respiratory tract infection (p = 0.003) and no leucopenia were seen in the Everolimus group. The glomerular filtration rate (GFR) decreased in both groups about 50% within 6 months. Due to a high withdrawal rate, the study was underpowered to prove a difference in BOS-free survival. The dropout rate was more pronounced in the Everolimus group. Secondary endpoints indicate potential advantages of Everolimus-based protocols but also a potentially higher rate of drug-related serious adverse events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.