A classical result due to Deshouillers, Dress and Tenenbaum asserts that on average the distribution of the divisors of the integers follows the arcsine law. In this paper, we investigate the distribution of smooth divisors of the integers, that is, those divisors which are free of large prime factors. We show that on average these divisors are distributed according to a probability law that we will describe.
En 1915, Srinivasa Ramanujan donne une borne inférieure de l'ordre maximum de la fonction itérée du nombre des diviseurs, d(d(n)). En 1989, Paul Erdős et Aleksandar Ivić en donnent une borne supérieure. Dans cette Note, on détermine l'ordre maximum de ω(d(n)), le nombre de diviseurs premiers de d(n), et on en déduit une amélioration du résultat d'Erdős et Ivić sur l'ordre maximum de d(d(n)). Pour citer cet article : A. Smati, C. R. Acad. Sci. Paris, Ser. I 340 (2005). 2004 Académie des sciences. Publié par Elsevier SAS. Tous droits réservés. Abstract On a problem by S. Ramanujan. In 1915, Srinivasa Ramanujan gives a lower limit for the maximum order of the iterated of the divisors function, d(d(n)). In 1989, Paul Erdős and Aleksandar Ivić give a upper bound. In this Note, we find the maximal order of the function ω(d(n)), the number of prime divisors of d(n), and we improve the result of Erdős and Ivić on the maximal order of d(d(n)). To cite this article: A. Smati, C. R. Acad. Sci. Paris, Ser. I 340 (2005). 2004 Académie des sciences. Publié par Elsevier SAS. Tous droits réservés.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.