Targeted tumour therapy has proved to be an efficient alternative to overcome the limitations of conventional chemotherapy. Among several receptors upregulated in cancer cells, the gastrin-releasing peptide receptor (GRP-R) has recently emerged as a promising target for cancer imaging, diagnosing and treatment due to its overexpression on cancerous tissues such as breast, prostate, pancreatic and small-cell lung cancer. Herein, we report on the in vitro and in vivo selective delivery of the cytotoxic drug daunorubicin to prostate and breast cancer, by targeting GRP-R. Exploiting many bombesin analogues as homing peptides, including a newly developed peptide, we produced eleven daunorubicin-containing peptide–drug conjugates (PDCs), acting as drug delivery systems to safely reach the tumour environment. Two of our bioconjugates revealed remarkable anti-proliferative activity, an efficient uptake by all three tested human breast and prostate cancer cell lines, high stability in plasma and a prompt release of the drug-containing metabolite by lysosomal enzymes. Moreover, they revealed a safe profile and a consistent reduction of the tumour volume in vivo. In conclusion, we highlight the importance of GRP-R binding PDCs in targeted cancer therapy, with the possibility of further tailoring and optimisation.
Enteric nervous system development relies on intestinal colonization by enteric neural crest-derived cells (ENCDCs). This is driven by a population of highly migratory and proliferative ENCDC at the wavefront, but the molecular characteristics of these cells are unknown. ENCDCs from the wavefront and the trailing region were isolated and subjected to RNA-seq. Wavefront-ENCDCs were transcriptionally distinct from trailing ENCDCs, and temporal modelling confirmed their relative immaturity. This population of ENCDCs exhibited altered expression of ECM and cytoskeletal genes, consistent with a migratory phenotype. Unlike trailing ENCDCs, the wavefront lacked expression of genes related to neuronal or glial maturation. Since wavefront ENCDC genes were associated with migration and developmental immaturity, the genes that remain expressed in later progenitor populations may be particularly pertinent to understand the maintenance of ENCDC progenitor characteristics. Dusp6 expression was specifically upregulated at the wavefront. Inhibiting DUSP6 activity prevented wavefront colonization of the hindgut, and inhibited the migratory ability of post-colonized ENCDCs from midgut and postnatal neurospheres. These effects were reversed by simultaneous inhibition of ERK signaling, indicating that DUSP6-mediated ERK inhibition is required for ENCDC migration.
The enteric nervous system (ENS), which is derived from enteric neural crest cells (ENCCs), represents the neuronal innervation of the intestine. Compromised ENCC migration can lead to Hirschsprung disease, which is characterized by an aganglionic distal bowel. During the craniocaudal migration of ENCCs along the gut, we find that their proliferation is greatest as the ENCC wavefront passes through the ceca, a pair of pouches at the midgut-hindgut junction in avian intestine. Removal of the ceca leads to hindgut aganglionosis, suggesting that they are required for ENS development. Comparative transcriptome profiling of the cecal buds compared with the interceca region shows that the non-canonical Wnt signaling pathway is preferentially expressed within the ceca. Specifically, WNT11 is highly expressed, as confirmed by RNA in situ hybridization, leading us to hypothesize that cecal expression of WNT11 is important for ENCC colonization of the hindgut. Organ cultures using embryonic day 6 avian intestine show that WNT11 inhibits enteric neuronal differentiation. These results reveal an essential role for the ceca during hindgut ENS formation and highlight an important function for non-canonical Wnt signaling in regulating ENCC differentiation.
Here we report a number of species for the first time from various European countries. These are Erioptera (Erioptera) divisa (Walker, 1848) and E. (E.
There are two types of secretory cells in the chicken bursa of Fabricius (BF): (a) interfollicular epithelial cells (IFE), and (b) bursal secretory dendritic cells (BSDC) in the medulla of bursal follicles. Both cells produce secretory granules, and the cells are highly susceptible to IBDV vaccination and infection. Before and during embryonic follicular bud formation, an electron-dense, scarlet-acid fuchsin positive substance emerges in the bursal lumen, the role of which is unknown. In IFE cells, IBDV infection may induce rapid granular discharge, and in several cells, peculiar granule formation, which suggests that the glycosylation of protein is injured in the Golgi complex. In control birds, the discharged BSDC granules appear in membrane-bound and subsequently solubilized, fine-flocculated forms. The solubilized, fine-flocculated substance is Movat-positive and can be a component of the medullary microenvironment, which prevents the medullary B lymphocytes from nascent apoptosis. Vaccination interferes with the solubilization of the membrane-bound substance, resulting in: (i) aggregation of a secreted substance around the BSDC, and (ii) solid lumps in the depleted medulla. The non-solubilized substance is possibly not “available” for B lymphocytes, resulting in apoptosis and immunosuppression. In IBDV infection, one part of the Movat-positive Mals fuse together to form a medullary, gp-containing “cyst”. The other part of Mals migrate into the cortex, recruiting granulocytes and initiating inflammation. During recovery the Movat-positive substance appears as solid, extracellular lumps between the cells of FAE and Mals. Possibly the Mals and Movat-positive extracellular lumps glide into the bursal lumen via FAE to eliminate cell detritus from the medulla.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.