One of the main causes of blindness is diabetic retinopathy (DR) and it may affect people of any ages. In these days, both young and old ages are affected by diabetes, and the di abetes is the main cause of DR. Hence, it is necessary to have an automated system with good accuracy and less computation time to diagnose and treat DR, and the automated system can simplify the work of ophthalmologists. The objective is to present an overview of various works recently in detecting and segmenting the various lesions of DR. Papers were categorized based on the diagnosing tools and the methods used for detecting early and advanced stage lesions. The early lesions of DR are microaneurysms, hemorrhages, exudates, and cotton wool spots and in the advanced stage, new and fragile blood vessels can be grown. Results have been evaluated in terms of sensitivity, specificity, accuracy and receiver operating characteristic curve. This paper analyzed the various steps and different algorithms used recently for the detection and classification of DR lesions. A comparison of performances has been made in terms of sensitivity, specificity, area under the curve, and accuracy. Suggestions, future workand the area to be improved were also discussed.Keywords: Diabetic retinopathy, Image processing, Morphological operations, Neural network, Fuzzy logic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.