Abstract-Rolling element bearings are critical mechanical components in rotating machinery. Fault detection and diagnosis in the early stages of damage is necessary to prevent their malfunctioning and failure during operation. Vibration monitoring is the most widely used and cost-effective monitoring technique to detect, locate and distinguish faults in rolling element bearings. This paper presents an algorithm using feed forward neural network for automated diagnosis of localized faults in rolling element bearings. Normal negative log-likelihood value and kurtosis value extracted from time-domain vibration signals are used as input features for the neural network. Trained neural networks are able to classify different states of the bearing with 100% accuracy. The proposed procedure requires only a few input features, resulting in simple preprocessing and faster training. Effectiveness of the proposed method is illustrated using the bearing vibration data obtained experimentally.
A wide range of uncertainties will be introduced inevitably during the process of performing a safety assessment of engineering systems. The impact of all these uncertainties must be addressed if the analysis is to serve as a tool in the decision-making process. Uncertainties present in the components (input parameters of model or basic events) of model output are propagated to quantify its impact in the final results. There are several methods available in the literature, namely, method of moments, discrete probability analysis, Monte Carlo simulation, fuzzy arithmetic, and Dempster-Shafer theory. All the methods are different in terms of characterizing at the component level and also in propagating to the system level. All these methods have different desirable and undesirable features, making them more or less useful in different situations. In the probabilistic framework, which is most widely used, probability distribution is used to characterize uncertainty. However, in situations in which one cannot specify (1) parameter values for input distributions, (2) precise probability distributions (shape), and (3) dependencies between input parameters, these methods have limitations and are found to be not effective. In order to address some of these limitations, the article presents uncertainty analysis in the context of level-1 probabilistic safety assessment (PSA) based on a probability bounds (PB) approach. PB analysis combines probability theory and interval arithmetic to produce probability boxes (p-boxes), structures that allow the comprehensive propagation through calculation in a rigorous way. A practical case study is also carried out with the developed code based on the PB approach and compared with the two-phase Monte Carlo simulation results.
Abstract-Wireless Sensor Network (WSN) consist of a large number of sensor nodes which are limited in battery power and communication range and are having multi-modal sensing capability. One of the most significant applications of wireless sensor network is environment monitoring. In this paper, a multi-sensor data fusion algorithm in WSN using fuzzy logic for event detection application is proposed. In the proposed method, each sensor node is equipped with diverse sensors (temperature, humidity light, and Carbon Monoxide). The use of more than one sensor provides additional information on the environmental condition. The processing and fusion of these diverse sensor signals are carried out using proposed fuzzy rule based system. All the diverse sensor signals are collected at the cluster head and fused using fuzzy rule based method. The multiple data fusion process improves the reliability and accuracy of the sensed information and thereby minimizes the false alarm rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.