-Generation of vortices enhances heat transfer by swirl, flow destabilization and development of viscous layers. They may increase heat transfer by several hundred percent. Prior to the use of vortices to influence heat transfer it must be known how different vortices are generated and controlled, and how they interact with the base flow and temperature field. To select the most appropriate vortex generators (VG) for a given task it is necessary to know the heat transfer and flow losses associated with the generation of a specific vortex system. The aim of the paper is to asses the state of art and to encourage exploration of heat transfer control by vortices. Flow visualization and heat transfer experiments were conducted using an open low-speed wind tunnel equipped with Liquid Crystals Thermography (LCT) and Particle Image Velocimetry (PIV). In this work we consider five types of transverse vortex generators (TVGs) which where brought to required temperatures by the hot film method. Heat transfer measurements were carried out by LCT.
The main goal of the research presented in this paper was the experimental and numerical analysis of heat enhancement and aerodynamic phenomena during air flow in a channel equipped with flow turbulators in the form of properly configured ribs. The use of ribs intensifies the heat transfer and at the same time increases not only the flow resistance but also the energy costs. Therefore, designing modern heat exchangers with optimal thermal and flow parameters requires the knowledge of the theory of heat exchangers as well as measurement methods and numerical calculations. Bearing in mind the above, the liquid crystal techniques (LCT), particle image velocimetry (PIV) and digital image processing (DIP) for temperature, velocity, friction factor and heat transfer coefficient measurements are presented herein. These three optical tools (using desktop computers) create an extremely powerful and advanced measuring technique that has not been available anywhere before. Brief histories of these measurement methods and techniques are discussed and some examples are presented. In order to assess and select the value of the measurement technique, local and average distributions of Nusselt numbers (in the measurement section) obtained by the transit analysis method on the inter-rib regions of a plate coated by thermochromics liquid crystal and heated by air as an alternative to the steady-state analysis. In the parallel, numerical calculation was performed with the use of the ANSYS Fluent software code and supported by laser anemometry-computed turbulence intensity of air flow. Comparison of the Nusselt number distributions was determined by three methods, i.e., steady state, the transient method and CFD simulation. Up to three-fold enhancement of the local heat transfer capability was observed. Failure to take into account the surface of the ribs in heat transfer causes differences in the obtained results of the Nusselt number depending on the method used. Apart from the heat transfer data, the pressure drop in the form of friction factors is also presented. On the basis of the conducted research, it can be stated that both qualitative and quantitative coherence was obtained between the experimental and computational studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.