Thermochromic liquid crystals (TLC) and true-colour digital image processing have been successfully used in non-intrusive technical, industrial and biomedical studies and applications. Thin coatings of TLC at surfaces are utilized to obtain detailed temperature distributions and heat transfer rates for steady or transient processes. Liquid crystals also can be used to make the temperature and velocity fields in liquids visible by the simple expedient of directly mixing the liquid crystal material into the liquid (water, glycerol, glycol, and silicone oils) in very small quantities to use as thermal and hydrodynamic tracers. In biomedical situations, e.g., skin diseases, breast cancer, blood circulation and other medical application, TLC and image processing are successfully used as an additional non-invasive diagnostic method especially useful for screening large groups of potential patients. The history of this technique is reviewed, principal methods and tools are described and some examples are presented. Also steady-state and transient liquid crystal thermography (LCT) is used to measure local heat transfer on a plate equipped with transverse vortex generators. Automated evaluation allows determining the heat transfer coefficient without arbitrary influence of human interpretation.
Abstract. Combustion and gasification technology utilizing high-cycle regenerative air/steam preheater has drawn increased attention in many application areas. The process is to be realized at temperature level above ash melting point using highly preheated agent. The use of highly preheated media above 900 o C provides additional energy to conversion processes and results in considerable changes to the design of combustion and gasification equipment and its performance. This paper presents an advanced gasification system that utilizes high-temperature air and steam to convert biomass and municipal wastes into syngas production as well as selected results from experimental studies of high temperature air/steam gasification.
The article presents the results of experimental examination of the wood chip suction system in the existing sliding table saw before and after its modifi cation. The studies focused on the extraction hood of the mentioned system. The methodical experimental research of the pressure distribution inside the hood during wood chip removal for the selected rotational speed of saw blades of 3500 and 6000 min-1 with a diameter of 300 mm and 450 mm were carried out. The analysis of the results allowed estimating the areas with insuffi cient vacuum pressure hindering the organized transport of wood chips in the sliding table saw. That pressure was the main factor infl uencing the decision to adjust the hood construction. To achieve the effi cient performance, several changes in the hood geometry were implemented. The results obtained from the experiments were used at the stage of shape modifi cation of the extraction hood. As a result, a new design of the chip suction system was obtained, vastly improving the chip extraction from the tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.