The Materials Science beamline at the Swiss Light Source has been operational since 2001. In late 2010, the original wiggler source was replaced with a novel insertion device, which allows unprecedented access to high photon energies from an undulator installed in a medium-energy storage ring. In order to best exploit the increased brilliance of this new source, the entire front-end and optics had to be redesigned. In this work, the upgrade of the beamline is described in detail. The tone is didactic, from which it is hoped the reader can adapt the concepts and ideas to his or her needs.
In our recent Letter, the atomic displacement given on the right axis of Fig. 5 was mistakenly overestimated by a factor of 4.2. The conclusions made in the Letter are not affected by our error.FIG. 5 (color online). Measured (symbols) and simulated (solid curves) bismuth (111) coherent optical phonon oscillation controlled by a 2-pulse excitation scheme. The absorbed energy density per pulse was 1:12 mJ=cm 2 .
We report on the temporal and spatial stability of the first tunable femtosecond undulator hard-x-ray source for ultrafast diffraction and absorption experiments. The 2.5-1 Angstrom output radiation is driven by an initial 50 fs laser pulse employing the laser-electron slicing technique. By using x-ray diffraction to probe laser-induced coherent optical phonons in bulk bismuth, we estimate an x-ray pulse duration of 140+/-30 fs FWHM with timing drifts below 30 fs rms measured over 5 days. Optical control of coherent lattice motion is demonstrated.
MAX IV will be Sweden's next-generation high-performance synchrotron radiation source. The project has recently been granted funding and construction is scheduled to begin in 2010. User operation for a broad and international user community should commence in 2015. The facility is comprised of two storage rings optimized for different wavelength ranges, a linac-based short-pulse facility and a freeelectron laser for the production of coherent radiation. The main radiation source of MAX IV will be a 528 m ultralow emittance storage ring operated at 3 GeV for the generation of high-brightness hard x rays. This storage ring was designed to meet the requirements of state-of-the-art insertion devices which will be installed in nineteen 5 m long dispersion-free straight sections. The storage ring is based on a novel multibend achromat design delivering an unprecedented horizontal bare lattice emittance of 0.33 nm rad and a vertical emittance below the 8 pm rad diffraction limit for 1 Å radiation. In this paper we present the beam dynamics considerations behind this storage-ring design and detail its expected unique performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.