Abstract.The penetration of the electric field and associated magnetic perturbations from high latitudes to low latitudes is studied with the Magnetosphere-Thermosphere- Ionosphere-Electrodynamics General
Abstract. The penetration of disturbance electric fields from the polar region to the magnetic equator on the dayside of the Earth is examined with geomagnetic data on May 27, 1993. First, we examine a dayside equatorial disturbance that followed the rapid recovery of magnetic activity from a storm and that has the characteristics of overshielding caused by persistent region-2 field-aligned currents.
This study aims to understand and document the occurrence and variability of cloud cover types in West Africa (WA). Investigations are carried out with a 10‐year hourly record of two cloud data products: CERES passive satellite observations and ERA5 reanalysis. The seasonal evolutions of high (HCC), middle (MCC), low (LCC) and total (TCC) cloud cover are examined. Both products agree on the seasonal and spatial occurrence of cloud cover, although CERES presents lower values of cloud fraction than ERA5 which is partly attributed to the inability of the satellite sensor to detect optically thin clouds in the atmosphere. Southern WA is found to be cloudier than other parts of the region in all seasons with mean TCC fractions of 70 and 80% for CERES and ERA5 respectively during the monsoon season. In all seasons, the presence of LCC over large areas of the Sahel/Sahara region is noted in the CERES product. This could be due to a possible misinterpretation of Saharan dust as low clouds which may have thus, caused it to overestimate the occurrences and fractions of LCC over this region. Northern WA is associated with higher frequencies of no cloud occurrence events, unlike the south where cloudless skies are rarely observed. Furthermore, in southern WA, overcast conditions of LCC are observed for a significant number of times (up to 20% of the time during the rainy season in CERES and 40% in ERA5). The climatology of cloud cover presented in this study could be useful for the planning of solar energy projects.
Abstract. During magnetic storms, the auroral electrojets intensification affects the thermospheric circulation on a global scale. This process which leads to electric field and current disturbance at middle and low latitudes, on the quiet day after the end of a storm, has been attributed to the ionospheric disturbance dynamo (Ddyn). The magnetic field disturbance observed as a result of this process is the reduction of the H component amplitude in the equatorial region which constitutes the main characteristic of the ionospheric disturbance dynamo process, associated with a westward electric current flow. The latitudinal profile of the Ddyn disturbance dynamo magnetic signature exhibits an eastward current at mid latitudes and a westward one at low latitudes with a substantial amplification at the magnetic equator. Such current flow reveals an "anti-Sq" system established between the mid latitudes and the equatorial region and opposes the normal Sq current vortex. However, the localization of the eastward current and consequently the position and the extent of the "anti-Sq" current vortex changes from one storm to another. Indeed, for a strong magnetic storm, the eastward current is well established at mid latitudes about 45 • N and for a weak magnetic storm, the eastward current is established toward the high latitudes (about 60 • N), near the Joule heating region, resulting in a large "anti-Sq" current cell. The latitudinal profile of the Ddyn disturbance as well as the magnetic disturbance DP2 generated by the mechanism of prompt penetration of the magnetospheric convection electric field in general, show a weak disturbance at the low latitudes with a substantial amplification at the magnetic equator. Due to the intensity of the storm, the magnitude of the DP2 appears higher than the Ddyn over the American and Asian sector contrary to the African sector.
Abstract. The latest version of RegCM4 with CLM4.5 as a land surface scheme was used to assess the performance and sensitivity of the simulated West African climate system to different convection schemes. The sensitivity studies were performed over the West African domain from November 2002 to December 2004 at a spatial resolution of 50 km × 50 km and involved five convective schemes: (i) Emanuel; (ii) Grell; (iii) Emanuel over land and Grell over ocean (Mix1); (iv) Grell over land and Emanuel over ocean (Mix2); and (v) Tiedtke. All simulations were forced with ERA-Interim data. Validation of surface temperature at 2 m and precipitation were conducted using data from the Climate Research Unit (CRU), Global Precipitation Climatology Project (GPCP) and the Tropical Rainfall Measurement Mission (TRMM) during June to September (rainy season), while the simulated atmospheric dynamic was compared to ERA-Interim data. It is worth noting that the few previous similar sensitivity studies conducted in the region were performed using BATS as a land surface scheme and involved less convective schemes. Compared with the previous version of RegCM, RegCM4-CLM also shows a general cold bias over West Africa whatever the convective scheme used. This cold bias is more reduced when using the Emanuel convective scheme. In terms of precipitation, the dominant feature in model simulations is a dry bias that is better reduced when using the Emanuel convective scheme. Considering the good performance with respect to a quantitative evaluation of the temperature and precipitation simulations over the entire West African domain and its subregions, the Emanuel convective scheme is recommended for the study of the West African climate system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.