Computationally efficient multiframe Wiener filtering algorithms that account for both intraframe (spatial) and interframe (temporal) correlations are proposed for restoring image sequences that are degraded by both blur and noise. One is a general computationally efficient multiframe filter, the cross-correlated multiframe (CCMF) Wiener filter, which directly utilizes the power and cross power spectra of only NxN matrices, where N is the number of frames used in the restoration. In certain special cases the CCMF lends itself to a closed-form solution that does not involve any matrix inversion. A special case is the motion-compensated multiframe (MCMF) filter, where each frame is assumed to be a globally shifted version of the previous frame. In this case, the interframe correlations can be implicitly accounted for using the estimated motion information. Thus the MCMF filter requires neither explicit estimation of cross correlations among the frames nor matrix inversion. Performance and robustness results are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.