Milk proteins genetic variants have always attracted a lot of interest as they are associated with important issues relating to milk composition and technological properties. An important debate has recently opened at an international level on the role of β-casein (β-CN) A1 and A2 polymorphisms, toward human health. For this reason, a lot of efforts has been put into the promotion of A2 milk by companies producing and selling A1-free milk, leading the farmers and breeders to switch toward A2 milk production without paying attention on the potential effect of the processability of milk into cheese. The aim of the present work was to evaluate the effects of β-CN, specifically the A1 and A2 allelic variants, on the detailed milk protein profile and cheese-making traits in individual milk samples of 1,133 Holstein Friesian cows. The protein fractions were measured with reversed-phase (RP)-HPLC (expressed in g/L and % N), and the cheese-making traits, namely milk coagulation properties, cheese yield, and curd nutrient recoveries assessed at the individual level, with a nano-scale cheese-making procedure. The β-CN (CSN2), κ-CN (CSN3), and β-lactoglobulin (LGB) genetic variants were first identified through RP-HPLC and then confirmed through genotyping. Estimates of the effects of protein genotypes were obtained using a mixed inheritance model that considered, besides the standard nuisance variables (i.e., days in milk, parity, and herd-date), the milk protein genes located on chromosome 6 (CSN2, CSN3) and on chromosome 11 (LGB), and the polygenic background of the animals. Milk protein genes (CSN2, CSN3, and LGB) explained an important part of the additive genetic variance in the traits evaluated. The β-CN A1A1 was associated with a significantly lower production of whey proteins, particularly of β-lactoglobulin (−8.2 and −6.8% for g/L and % N, respectively) and α-lactalbumin (−4.7 and −4.4% for g/L and % N, respectively), and a higher production of β-CN (6.8 and 6.1% for g/L and % N, respectively) with respect to the A2A2 genotype. Regarding milk cheese-making ability, the A2A2 genotype showed the worst performance compared with the other genotypes, particularly with respect to the BA1, with a higher rennet coagulation time (7.1 and 28.6% compared with A1A1 and BA1, respectively) and a lower curd firmness at 30 min. Changes in milk protein composition through an increase in the frequency of the A2 allele in the production process could lead to a worsening of the coagulation and curd firming traits.
Dairy cows have high incidences of metabolic disturbances, which often lead to disease, having a subsequent significant impact on productivity and reproductive performance. As the milk fatty acid (FA) profile represents a fingerprint of the cow’s nutritional and metabolic status, it could be a suitable indicator of metabolic status at the cow level. In this study, we obtained milk FA profile and a set of metabolic indicators (body condition score, ultrasound liver measurements, and 29 hematochemical parameters) from 297 Holstein–Friesian cows. First, we applied a multivariate factor analysis to detect latent structure among the milk FAs. We then explored the associations between these new synthetic variables and the morphometric, ultrasonographic and hematic indicators of immune and metabolic status. Significant associations were exhibited by the odd-chain FAs, which were inversely associated with β-hydroxybutyrate and ceruloplasmin, and positively associated with glucose, albumin, and γ-glutamyl transferase. Short-chain FAs were inversely related to predicted triacylglycerol liver content. Rumen biohydrogenation intermediates were associated with glucose, cholesterol, and albumin. These results offer new insights into the potential use of milk FAs as indicators of variations in energy and nutritional metabolism in early lactating dairy cows.
Udder health in dairy herds is a very important issue given its implications for animal welfare and the production of high-quality milk. Somatic cell count (SCC) is the most widely used means of assessing udder health status. However, differential somatic cell count (DSCC) has recently been proposed as a new and more effective means of evaluating intramammary infection dynamics. Differential SCC represents the combined percentage of polymorphonuclear neutrophils and lymphocytes (PMN-LYM) in the total SCC, with macrophages (MAC) accounting for the remaining proportion. The aim of this study was to evaluate the association between SCC and DSCC and the detailed milk protein profile in a population of 1,482 Holstein cows. A validated reversed-phase HPLC method was used to quantify 4 caseins (CN), namely α S1 -CN, α S2 -CN, κ-CN, and β-CN, and 3 whey protein fractions, namely β-lactoglobulin, α-lactalbumin, and lactoferrin, which were expressed both quantitatively (g/L) and qualitatively (as a percentage of the total milk nitrogen content, %N). A linear mixed model was fitted to explore the associations between somatic cell score (SCS) combined with DSCC and the protein fractions expressed quantitatively and qualitatively. We ran an additional model that included DSCC expressed as PMN-LYM and MAC counts, obtained by multiplying the percentages of PMN-LYM and MAC by SCC for each cow in the data set. When the protein fractions were expressed as grams per liter, SCS was significantly negatively associated with almost all the casein fractions and positively associated with the whey protein α-lactalbumin, while DSCC was significantly associated with α S1 -CN, β-CN, and α-lactalbumin, but in the opposite direction to SCS. We observed the same pattern with the qualitative data (i.e., %N), confirming opposite effects of SCS and DSCC on milk protein fractions. The PMN-LYM count was only slightly associated with the traits of concern, although the pattern observed was the same as when both SCS and DSCC were included in the model. The MAC count, however, generally had a greater impact on many casein fractions, in particular decreasing both β-CN content (g/L) and proportion (%N), and exhibited the opposite pattern to the PMN-LYM count. Our results show that information obtained from both SCS and DSCC may be useful in assessing milk quality and protein fractions. They also demonstrate the potential of MAC count as a novel udder health trait.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.