Abstract-In this paper, we proposed a novel Coordinate Rotation DIgital Computer (CORDIC) rotator algorithm that converges to the final target angle by adaptively executing appropriate iteration steps while keeping the scale factor virtually constant and completely predictable. The new feature of our scheme is that, depending on the input angle, the scale factor can assume only two values, viz., 1 and 1 2, and it is independent of the number of executed iterations, nature of iterations, and word length. In this algorithm, compared to the conventional CORDIC, a reduction of 50% iteration is achieved on an average without compromising the accuracy. The adaptive selection of the appropriate iteration step is predicted from the binary representation of the target angle, and no further arithmetic computation in the angle approximation datapath is required. The convergence range of the proposed CORDIC rotator is spanned over the entire coordinate space. The new CORDIC rotator requires 22% less adders and 53% less registers compared to that of the conventional CORDIC. The synthesized cell area of the proposed CORDIC rotator core is 0.7 mm 2 and its power dissipation is 7 mW in IHP in-house 0.25-m BiCMOS technology.Index Terms-Coordinate rotation digital computer (CORDIC), digital signal processing (DSP), scaling-free CORDIC, vector rotation, very large-scale integration (VLSI).
Abstract-In this article we propose a complete solution for the so-called Inner Receiver of an OFDM-WLAN system based on the IEEE 802.11a standard. We concentrate our investigations on three key components forming the Inner Receiver namely, the Synchronizer, the Channel Estimator and the Digital Timing Loop. The main goal is the joint optimization of the signal processing algorithms along with the implementation friendly VLSI architecture required for these three key components in order to reduce power, area and latency, without compromising the performance excessively. We provide both the mathematical details and extensive computer simulations to validate our design.
The authors propose a coordinate rotation digital computer (CORDIC) rotator algorithm that eliminates the problems of scale factor compensation and limited range of convergence associated with the classical CORDIC algorithm. In the proposed scheme, depending on the target angle or the initial coordinate of the vector, a scaling by 1 or 1= p 2 is needed that can be realised with minimal hardware. The proposed CORDIC rotator adaptively selects the appropriate iteration steps and converges to the final result by executing on average only 50% of the number of iterations required by the classical CORDIC. Unlike for the classical CORDIC, the value of the scale factor is completely independent of the number of executed iterations. Based on the proposed algorithm, a 16-bit pipelined CORDIC rotator was implemented. The silicon area of the fabricated pipelined CORDIC rotator core is 2.73 mm 2 . This is equivalent to 38 000 inverter gates in the used 0.25 mm BiCMOS technology. The average dynamic power consumption of the fabricated CORDIC rotator is 17 mW at a 2.5 V supply voltage and a 20 Ms=s throughput. Currently, this CORDIC rotator is used as a part of the baseband processor for a project that aims to design a single-chip wireless modem compliant with the IEEE 802.11a standard.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.