Malaria parasites growing inside human eryhtrocytes differ from mammalian cells in their mode of acquisition of bioavailable iron and in their susceptibility to the antiproliferative action of iron chelators. We have assessed here three major properties associated with these phenomena: (a) the stage-dependent nature of parasite iron mobilization from the host and its integration into parasite proteins; (b) the differential permeability of the plasma membrane to iron chelators, and (c) the in situ generation of toxic chelator-metal complexes in the intracellular milieu of infected cells. We have used a combination of synthetic and natural iron chelators with similar iron-binding properties but markedly different capacities to permeate membranes. The profiles of action of these agents on the in vitro growth of Plasmodium falciparum were assessed in terms of inhibitory concentrations, speed of action, stage dependence and reversibility of effects. These profiles provided the basis for a working model of chelator action on parasitized cells. The model allowed us to predict major improvements in the antimalarial performance of iron chelators when used in appropriate combinations of slow- and fast-permeating substances. The synergistic actions found in vitro for various combinations of iron chelators are in accordance with the model and have implications for the design of therapeutic schemes.
The role of reactive oxygen species (ROS) generated by polymorphonuclear leucocytes (PMNs) in the host response against malaria was investigated. Non-activated human PMNs were added to cultures of P. falciparum in microtitre cells. Parasite viability was evaluated by the incorporation of radioactive hypoxanthine. Using PMN/RBC = 1/150 (starting parasitemia was 1%) the incorporation on the second day in culture was only 61% of the control cultures. An effect could be observed already after two hours of incubation (30% reduction at a 1/50 PMN/RBC ratio). A direct contact between the effector and target cells was obligatory for the expression of the damage. Parasites within G6PD-deficient erythrocytes were more sensitive to the PMNs than normal parasitized erythrocytes. This difference could be attributed to the production of reactive oxygen intermediates in the experimental system, since G6PD-deficient erythrocytes are generally more sensitive to oxidant stress. Salicylic acid was used as a scavenger and reporter molecule for hydroxyl radical fluxes. It is converted to the corresponding dihydroxybenzoic acid derivatives, which could be detected by HPLC. Uninfected NRBC or parasitized erythrocytes containing young ring forms could trigger the PMNs to produce much less ROS than the mature forms of the parasites. Other factors associated with PMNs may inactivate the parasites, such as phagocytosis, lysosomal enzymes or degradation toxic products of the PMNs. However our results indicate that increased oxidative stress induced by PMNs interfere with the growth of P. falciparum and could play a role in human evolution of abnormal erythrocytes.
Hydroxamate-based chelators of iron are potent inhibitors of in vitro growth of Plasmodium falciparum. Two types of such chelators, the natural desferrioxamine and the synthetic reversed siderophore RSF ileum2 , are prototypes of antimalarial agents whose action spectra differ in the speed of action, stage dependence, and degree of reversibility of effects. This work explores the possibility of improving the antimalarial efficacy of these agents by using them in various combinations on in vitro cultures of P. falciparum. Growth assessment was based both on total nucleic acid synthesis and on parasitemia. The results indicate that the synthetic reversed siderophore more than complements the antimalarial action of desferrioxamine when applied during either ring, trophozoite, or mixed stages. The combined drug effects were significantly higher than the additive effect of the individual drugs. Qualitatively similar results were obtained for both reversible effects and irreversible (i.e., sustained) effects. Following an 8-h window of exposure the combined drug treatment caused parasite growth arrest and prevented its recovery, even 3 days after the treatment. The fact that such a combination of iron chelators displays a wider action spectrum than either drug alone has implications for the design of chemotherapy regimens.
Reversed siderophores (RSFs) are artificial hydroxamate-based iron chelators designed after the natural siderophore ferrichrome. The modular molecular design of RSF derivatives allowed the synthesis of various congeners with controlled iron-binding capacities and partition coefficients. These two physicochemical properties were assessed by a novel fluorescent method and were found to be the major determinants of RSF permeation across erythrocyte membranes and scavenging of compartmentalized iron. The partition coefficient apparently conferred upon RSFs two major features: (i) the ability to rapidly access iron pools of in vitro-grown Plasmodium falciparum at all developmental stages and to mobilize intracellular iron and transfer it to the medium and (ii) the ability to suppress parasite growth at all developmental stages. These features of RSFs were assessed by quantitative determination of the structure-activity relationships of the biological activities and partition coefficients spanning a wide range of values. The most effective RSF containing the aromatic group of phenylalanine (RSFm2phe) showed 50% inhibitory concentration of 0.60 +/- 0.03 nmol/ml in a 48-h test and a 2-h onset of inhibition of ring development at 5 nmol/ml. The lipophilic compound RSFm2phe and the lipophilic and esterase-cleavable compound RSFm2pee inhibited parasite growth at all developmental stages whether inhibition was assessed in a continuous mode or after discontinuing drug administration. The antimalarial effects of RSFm2phe and cleavable RSFm2pee were potentiated in the presence of desferrioxamine (DFO) at concentrations at which DFO alone had no effect on parasite growth. These studies provide experimental evidence indicating that the effective and persistent antimalarial actions of RSFs are associated with drug access to infected cells and scavenging of iron from intracellular parasites. Moreover, the optimal antimalarial actions of RSFs are apparently also determined by improved accessibility to critical iron pools or by specific interactions with critical parasite targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.