Cognitively advanced animals are usually assumed to possess better self-control, or ability to decline immediate rewards in favour of delayed ones, than less cognitively advanced animals. It has been claimed that the best predictor of high such ability is absolute brain volume meaning that large-brained animals should perform better than small-brained ones. We tested self-control ability in the great tit, a small passerine. In the common test of this ability, the animal is presented with a transparent cylinder that contains a piece of food. If the animal tries to take the reward through the transparent wall of the cylinder, this is considered an impulsive act and it fails the test. If it moves to an opening and takes the reward this way, it passes the test. The average performance of our great tits was 80%, higher than most animals that have been tested and almost in level with the performance in corvids and apes. This is remarkable considering that the brain volume of a great tit is 3% of that of a raven and 0.1% of that of a chimpanzee.Significance statementThe transparent cylinder test is the most common way to test the ability of self-control in animals. If an animal understands that it only can take food in the cylinder from the cylinder’s opening and controls its impulsivity, it passes the test. A high level of self-control has been demonstrated only in cognitively advanced animals such as apes and corvids. Here, we demonstrate that the great tit, a small song bird that is very good at learning, performs almost in level with chimpanzees and ravens in this test.Electronic supplementary materialThe online version of this article (10.1007/s00265-018-2529-z) contains supplementary material, which is available to authorized users.
Self-recognition is a trait presumed to be associated with high levels of cognition and something previously considered to be exclusive to humans and possibly apes. The most common test of self-recognition is the mark/mirror test of whether an animal can understand that it sees its own reflection in a mirror. The usual design is that an animal is marked with a colour spot somewhere on the body where the spot can only be seen by the animal by using a mirror. Very few species have passed this test, and among birds, only magpies have been affirmatively demonstrated to pass it. In this study, we tested great tits (Parus major), small passerines, that are known for their innovative foraging skills and good problem-solving abilities, in the mirror self-recognition test. We found no indication that they have any ability of this kind and believe that they are unlikely to be capable of this type of self-recognition.
Ability to efficiently localize productive foraging habitat is crucial for nesting success of insectivorous birds. Some bird species can use olfaction to identify caterpillar-infested trees by detection of herbivore induced plant volatiles (HIPVs), but these cues probably need to be learned. So far, we know very little about the process of olfactory learning in birds, whether insectivorous species have a predisposition for detecting and learning HIPVs, due to the high ecological significance of these odors, and how olfaction is integrated with vision in making foraging decisions. In a standardized setup, we tested whether 35 wild-caught great tits (Parus major) show any preference for widely abundant HIPVs compared to neutral (non-induced) plant odors, how fast they learn to associate olfactory, visual and multimodal foraging cues with food, and whether the olfactory preferences and learning speed were influenced by bird sex or habitat (urban or rural). We also tested how fast birds switch to a new cue of the same modality. Great tits showed no initial preference for HIPVs compared to neutral odors, and they learned all olfactory cues at a similar pace, except for methyl salicylate (MeSA), which they learned more slowly. We also found no differences in learning speeds between visual, olfactory and multimodal foraging cues, but birds learned the second cue they were offered faster than the first one. Bird sex or habitat had no effect on learning speed or olfactory preference, but urban birds tended to learn visual cues more slowly. We conclude that insectivorous birds utilize olfactory and visual cues with similar efficiency in foraging, and that they probably don‘t have any special predisposition toward the tested HIPVs. These results confirm that great tits are flexible foragers with good learning abilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.